首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
A wetted wall bioaerosol sampling cyclone with an aerosol sampling flow rate of 1250 L/min and a continuous liquid outflow rate of about 1 mL/min was developed by upgrading an existing system. The aerosol-to-hydrosol collection efficiency curve for the upgraded device was shown to have a cutpoint of 1.2 μ m aerodynamic diameter (AD) and an average collection efficiency of 90% over the size range of 2 to 10.2 μ m AD. Tests with near-monodisperse cells and clusters of Bacillus atrophaeus (aka BG) spores showed an average aerosol-to-hydrosol collection efficiency of 98% over the size range from 1.7 to 9.8 μ m AD. Pressure drop across the cyclone, which is also the ideal specific power, was 5.5 kPa (22 inches H2O). Stokes scaling was used to design geometrically similar cyclones with nominal air sampling flow rates of 100 and 300 L/min. Extensive tests were performed with the 100 L/min unit and check tests with the 300 L/min. Results with the scaled units showed similar, although somewhat lower collection efficiencies than the 1250 L/min device, but with lower consumption of liquid and lower pressure losses. For the 100 L/min cyclone, the cutpoint of the aerosol-to-hydrosol efficiency curve was 1.2 μ m AD, and the average collection efficiency for single cells and clusters of BG spores was 86% over a size range of 1.2 to 8.3 μ m AD. Also, for the 100 L/min cyclone, typical output liquid flow rates were 100 μ L/min, and the pressure loss was 1.6 kPa (6.4 inches H2O).  相似文献   

2.
Computational fluid dynamics techniques are used to study the performance of an axial flow bioaerosol sampling cyclone that continuously collects particles onto a flowing liquid film. A special shell-volume concept was developed to study formation and development of the liquid film on the inner wall of the cyclone. For a previous version of the cyclone, simulations demonstrated the presence of a ring of liquid in the region just upstream of the liquid skimmer that was suspected of causing liquid carryover into the exhaust air stream and degradation in aerosol collection efficiency. This ring was eliminated by re-design of the cyclone. For the upgraded version of the cyclone, CFD was used to successfully predict aerosol collection efficiency and cyclone pressure drop. The simulations reveal a complex flow evolution inside the cyclone. Stream-tubes are used to describe a significant narrowing of the width of the airflow as it enters the cyclone and an inward displacement of the flow as it travels in the axial direction. The particle deposition occurs primarily in a region that is subtended approximately by the length of the rectangular entrance slot and the first half turn of the flow in the cyclone. Cutpoint Stokes number is about 0.05 and the cutpoint particle size is about 1 μm aerodynamic diameter. At a flow rate of 1250 L/min, the pressure drop across the cyclone is 5.6 kPa (22 inches of water).  相似文献   

3.
The proof of concept of a novel in-line real impactor (IRI) for preseparation of large particles in ambient inlets was demonstrated with a 1,250 L/min design. Numerical simulations predicted a cutpoint Stokes number 0.3 for a ratio of jet-to-plate spacing to jet width (S/W) of 2.0 and 0.5 for a ratio of 4.0. This variation in cutpoint Stokes number allows minor adjustments in cutpoint for a given device size. Experimental benchmark tests support the prediction of a shift in cutpoint with S/W. Inlet systems with flow rates of 100 and 400 L/min were designed by Stokes scaling of the 1,250 L/min IRI and integrating the lower flow devices with an existing inlet aspiration section and an insect screen. Experiments with the inlet system were conducted in a wind tunnel with particles from 3 to 20 μm aerodynamic diameter (AD) and wind speeds of 2, 8, and 24 km/h. A nominal cutpoint of approximately 11 μm AD was selected to accommodate bioaerosol sampling needs, and the wind tunnel results showed the average cutpoints of the 100 and 400 L/min inlet systems at the three wind speeds were 11.2 and 11.6 μm AD, respectively. Stand-alone tests with the 100 and 400 L/min IRIs were conducted where dry dusts (Arizona road dust/fine and coarse) were impacted on three types of collection surfaces (dry, grease-coated, and oil-soaked porous surfaces) to characterize solid particle carryover. The oil-soaked porous media allowed the least carryover of large solid particles.  相似文献   

4.
Flow instabilities in a virtual impactor designed for bioaerosol concentration (size range about 2 to 10 μ m AD) can seriously degrade performance. When the flow in a 100 L/min circumferential slot virtual impactor (CSVI) was unstable, the transmission efficiency was 30% for 7.2 μ m AD aerosol particles, but when the instability problems were corrected, the transmission efficiency was increased to above 90%. Three-dimensional CFD simulations have been used to examine flows in two CSVIs, a nominal 10 L/min device in which the flow was stable, and the 100 L/min device in which the flow was initially unstable. From the CFD flow patterns in the 100 L/min device, the principal instability was in the minor flow region and was caused by overly rapid flow deceleration, too large of a volume, and too low of a jet velocity in that region. Changes were made to the geometry of the CSVI, and CFD was used as the diagnostic tool to determine when stable flow was achieved. Also, for the 100 L/min unit, wake effects from alignment posts that hold together the two halves of the CSVI propagated into the receiver section, and CFD analyses were used to modify the post locations to optimize the transmission efficiencies for the stable units. Numerical and experimental results show the dynamic ranges (ratio of the largest Stokes number for which the transmission efficiency is 50% to the cutpoint Stokes number) are about 100 for both devices. The peak value of the transmission efficiency for the 100 L/min unit is 95% and that for the 10 L/min device is 97%.  相似文献   

5.

Cascade impactors provide an efficient method for sampling aerosols according to their size, grossly between 0.1 mu m and a few tens of microns in diameter. We have designed such an apparatus, with rotatable substrate plates and radially aligned rectangular orifices. The nominal cutpoint diameters are, respec tively, for stages 1-7 of the collector: 10, 5, 2, 1, 0.5, 0.25, and 0.1 mu m aed for an airflow of 10/L min. The sampler has an auxiliary set of orifice plates for operation at 20/L min giving the same cutpoint characteristics. Annular deposits are obtained following complete rotation of the collecting substrates. The airflow is controlled with a critical orifice at the last stage. A calculation program was written for a rectangular orifice impactor in order to determine the cutpoints in different conditions. The constant exit pressure mode of operation appears to be the best way to minimize fluctuations of the effective cutpoints against the varying conditions of ambient temperature and pressure. The SPAL sampler has proven satisfactory with respect to manipulations required, maintenance, and results delivered.  相似文献   

6.

Based on the particle cup impactor configuration, an inlet for sampling fine particles smaller than 2.5 w m in diameter was designed for operation at a flow rate of 25 l/min. To determine the optimal dimensions of the particle cup impactor applicable to the PM 2.5 inlet, calibration experiments were carried out at wind velocities of 2 and 24 km/h in a wind tunnel. It was noted that the particle cup impactor having an impaction nozzle diameter of 3.2 mm and the nozzle-to-cup spacing of 3.6 mm yielded a sharp size cutoff. Supplementary experiments were conducted on sampling performance with the inlet having the optimally selected configuration at a near-zero wind speed in the test chamber. Results of the tests showed the inlet had a cutoff size of 2.43 w m in aerodynamic diameter, at 25 l/min, and that particles larger than 2.5 w m were trapped in the cup. Additional experiments covering a flow rate between 10 and 40 l/min with particle sizes between 0.8 and 4.3 w m were conducted in the test chamber. A field test was performed to examine the PM 2.5 inlet in real situations. The performance indicated that the inlet design met the basic requirements of fine-particle sampling.  相似文献   

7.
A new set of experimental data on the particle collection characteristics of small cyclones is reported. The collection efficiency for particles ranging from 2 to 10 μm in diameter was measured systematically for nine cyclones at flow rates ranging from 8.8 to 18.4 L/min. Special emphasis was given to the effects of the exit tube size and of the cyclone body size on the particle collection efficiency. The size ratio of the exit tube to the cyclone body was varied from 0.24 to 0.80. The experimental results show that the stiffness of the particle collection cutoff with size does not change noticeably with a change in the cyclone body size while operation of a cyclone at a low flow rate can cause the particle collection characteristics to become less stiff. It was also found that the exit tube diameter influences the particle collection efficiency substantially, with results showing that as the exit tube size is decreased, the collection efficiency increases. A large cyclone body size increases the efficiency. However, when the cyclone body is increased excessively, the collection efficiency appears to decrease somewhat. The experimental data were compared with existing cyclone theories and Barth's (1956) theory was found to be in good agreement. Finally, the exit tube was found to affect substantially the pressure drop of cyclones. As the exit tube size increased, the pressure drop decreased. However, when the exit tube size was further increased until it approached the body size, the pressure drop increased again.  相似文献   

8.

The SPAL collector is a versatile impactor-type aerosol collector with rotatable substrate plates and radially aligned slot orifices. The airflow, controlled with a critical orifice at the last stage, becomes choked for an exit pressure of 0.5 atm or less. Monodisperse latex and methylene blue aerosols sampled on coated and uncoated aluminum foil substrates were used to determine the particle cutpoint diameters of each stage (9.0-0.07 mu m aed), loss on walls (3-7% for 0.054 mu m particles), and overall efficiency (97% from 0.3 to 7 mu m). Quantitative measurements were made with a spectrophotometer after recovering aerosols with a water and surfactant solution and with a semiautomated particle counting system using phase contrast microscopy. The experimental cutpoints and mea sured interstage pressures compare well with theory.  相似文献   

9.

A particle sampler has been developed, built, and tested. The sampler draws ambient air at approximately 300 L/min and then splits the sampled air into a particle-rich sample stream and a particle-depleted, reject stream. The particle-rich stream contains only 0.3% of the inlet air (i.e., 1-L/min), but 50-90% of the ambient particles in the size range of 2.3 w m to 8.4 w m. This 1-L/min sample stream contains the particles at a concentration of approximately 150-270 times that of the ambient air. For this reason, the sampler is called an aerosol concentrator. By concentrating the particles of interest, we substantially improve the response time and detection limit characteristics of any detector that may be used downstream of the sampler. The aerosol concentrator is a three-stage virtual impactor. The first stage is a scalper drawing nominally 330 L/min of air through a conventional single-nozzle virtual impactor. Particles larger than 10 microns are retained in the 30-L/min minor flow and rejected from the sampler. The remaining 300 L/min of air passes through a two-stage, concentrating virtual impactor (CVI) that splits the flow into a 1-L/min sample stream and a 299-L/min reject stream. The reject stream consists of 285 L/min from the first stage and 14 L/min from the second stage. A blower draws the 299-L/min reject stream and exhausts it through the nozzle of an ejector. The ejector contains a venturi-like tube that aspirates the 30-L/min reject stream from the scalper, making an overall exhaust stream of 329 L/min. Fifty to ninety percent of the particles in the size range of 2.3 microns to 8.4 microns originally in the 300-L/min stream are now contained in the 1 L/min sample stream. The sampler has no valves, and the particles in the 1 L/min sample stream do not encounter a blower, minimizing the losses of particles in the size range of interest. The emphasis on low losses improves the detection limit and speed of detection of the downstream instrumentation and also reduces the frequency of cleaning the sampler.  相似文献   

10.

Conventional PM 10 inlets available operate at a flow rate of 16.7 l/min. The purpose of this study was to develop and test a PM 10 inlet designed to operate at 50 l/min to be used with a recently developed continuous coarse particle monitor (Misra et al.). Laboratory tests using polystyrene latex particles established the inlet's 50% cutpoint at 9.5 w m. Further evaluation of PM 10 inlet was performed in a wind tunnel at wind speeds of 3, 8, and 24 km/h. Tests showed that the 50% efficiency cutpoint as well as the very sharp particle separation characteristics of the inlet were maintained at these wind speeds. Field evaluation of the PM 10 inlet was performed in Riverside and Rubidoux, CA. A 2.5 w m cutpoint round nozzle virtual impactor was attached downstream of the developed PM 10 inlet. The Dichotomous PM 10 Partisol Sampler, operating at a flow rate of 16.7 l/min was used as a reference sampler. The Dichotomous Partisol uses an FRM PM 10 inlet operating at 16.7 l/min to remove particles larger than 10 w m in aerodynamic diameter. Commercially available 4.7 cm Teflon filters were used in both the Partisol and the PM 10 inlet to collect particulate matter (PM). Results showed good agreement between coarse PM (2.5-10 w m) mass concentrations measured by means of the PM 10 inlet and Partisol. Chemical analyses showed excellent agreement between coarse PM concentrations of Al, K, Si, Ca, and Fe obtained by the two samplers. The agreement also persisted for nitrate and sulfate. Finally, the excellent agreement between coarse concentrations of the PM 10 inlet and Partisol persisted for wind speeds up to 19 km/h.  相似文献   

11.
基于气固两相流和冲蚀理论对常规Stairmand旋风分离器和防磨型旋风分离器冲蚀规律进行了研究. 结果表明,对常规旋风分离器,其壁面冲蚀磨损速率从筒体顶端向下逐渐减小,在筒体L1/H1=0.8以下区域,磨损速率基本保持不变;在L1/H1=0.8以上区域,冲蚀磨损呈增大趋势,最大为2.3′10-6 kg/(m2×s);在锥体L2/H2=0.35以下区域,冲蚀速率逐渐减小;而在L2/H2=0.35以上区域呈逐渐增大趋势,在锥体顶端达最大值2.0′10-7 kg/(m2×s). 对防磨型旋风分离器,在筒体L1/H1=0.8以上区域,壁面最大冲蚀速率为0.5′10-6 kg/(m2×s),远小于常规旋风分离器. 在锥体从锥底向上冲蚀速率逐渐减小,在锥体顶端为0.4′10-7 kg/(m2×s),小于常规旋风分离器. 在小粒径范围内,分离效率随粒径增加而基本呈线性递增趋势. 粒径大于4 mm时,防磨型旋风分离器具有较高的分离效率. 压降随防磨板高度增加逐渐减小. A3型防磨分离器压降为360 Pa,小于常规分离器压降550 Pa. 为了降低旋风分离器壁面的冲蚀磨损,减少出口压降损失,粒径大于4 mm时,可选择最合理的B1型防磨分离器提高旋风分离器的防磨性能,从而延长使用寿命.  相似文献   

12.
C. Syred  W. Fick  A.J. Griffiths  N. Syred 《Fuel》2004,83(17-18):2381-2392
An inverted cyclone gasifier and secondary cyclone combustor have been developed for use in a biomass fired small-scale cogeneration plant. The gasifier was designed with a vortex collector pocket (VCP) and a central collector pocket (CCP) to maximise particle and ash separation from the flow, and remove alkali and other heavy metal traces that agglomerate with the ash particles. The gasifier design was robust and suitable for firing with varying input conditions. The gasifier exhaust gas is suitable for directly firing into the secondary cyclone combustor without any complex hot gas clean up systems. The cyclone combustor produces a strong swirling flow with good mixing and burnout patterns, creating stable combustion conditions. The use of an additional VCP situated before the combustor exit removes the need for additional cyclone separators. An exhaust mounted tangential off-take on the combustor reduces pressure drop across the system and gives near uniform exhaust velocity profiles. The gasifier achieved 98–99% burnout with good separation/retention rates and 50% alkali, Na and K removal. A good quality low calorific value (LCV) gas was produced that could be effectively utilised in the cyclone combustor. The cyclone combustor produces a stable flow, with good mixing and burnout rates, and uniform exit conditions and could be operated in a lean mode to minimize NOx. The additional use of a VCP removed particles above 5 μm, as specified by turbine inlet conditions. The gas was suitable for directly firing into the gas turbine. Low pressure drop was found across the system.  相似文献   

13.

An axisymmetric turbulent air jet flow (with vertical and downward orientation) laden with fluorescent solid particles was impinged normally onto a flat surface. The particle deposition efficiency and distribution on the flat surface were measured experimentally using fluorometry and imaging techniques. The fluorescent particles (5.0 μm diameter) were dispersed by a nebulizer and injected in a stream of compressed air, resulting in a steady flow (Q = 111 L/min). A round nozzle was used to generate a jet characterized by a Reynolds number of Re = 10 4 , based on the nozzle diameter (D = 15.0 mm) and nozzle exit velocity (u = 10.5 m/s). Three dimensionless distances from the nozzle's exit to the impaction surface, L/D = 2, 4, and 6, were investigated. It was observed that although having similar total deposition efficiencies (16.5–17.8%), shorter nozzle to surface distances (L/D = 2 and 4) show a more pronounced ring-like radial deposition pattern around the stagnation point. These shorter distances also exhibit significantly lower particle deposition near the stagnation point when compared to the longer distance (L/D = 6). Indeed, in moving through L/D = 2, 4, and 6, peak deposition density values of 254, 347, and 685 particles/mm 2 shift through radii of 2.1 D, 0.8 D, and 0.1 D, respectively. In addition to the experiments, numerical simulation was also performed, which showed that the particle deposition was dominated by a turbulent dispersion mechanism for L/D = 2, with inertial impaction becoming more important for the L/D = 4 and 6 cases.  相似文献   

14.
孙春华  宁智  乔信起  李元绪  吕明 《化工学报》2018,69(10):4253-4260
采用实验和仿真方法,对一特定气泡雾化喷嘴泡状流时混合室内的气液两相混合形态以及喷孔出口喷雾脉动特征进行了研究。研究结果表明,泡状流时气泡尺寸呈近似正态分布,气泡尺寸随液相质量流量和气液质量比增大而减小;喷雾形态和喷孔出口气液流动参数存在较大脉动,喷雾锥角脉动超过20°;气泡数量密度小且气泡直径较大时,喷雾平均锥角相对较小,且喷雾脉动现象比较严重;随着气泡数量密度增加,喷雾平均锥角呈现先快速增大后缓慢增大趋势,而喷雾锥角变异系数先快速增大随后逐渐减小并趋于稳定;复杂的流场结构是喷孔内气泡表观形态发生较大变化以及喷孔出口气液流动参数产生较大脉动的主要原因。  相似文献   

15.
HEAT AND MASS TRANSFER IN IMPINGEMENT DRYING   总被引:2,自引:0,他引:2  
Suna Polat 《Drying Technology》1993,11(6):1147-1176
In industrial drying applications, efficient transfer of heat and mass between a drying medium and the material being dried is very critical for the overall economics of the operation. Impinging jets are therefore widely used for their enhanced tmnsport characteristics, especially for drying of continuous sheets of materials such as paper and textiles. In such applications, a thin sheet of material, as wide as 6m in cross machine direction, speeds at velocities as high as 90 km/hr under high velocity jets emerging from a confining surface parallel to the material surface. Many variables and effects need to k considered for proper design of such impinging jet systems: nozzle geometry and size, nozzle configuration, location of exhaust pons, nozzle-to-surface separation, jet-to-jet separation, cross flow, jet exit velocity and surface motion. For permeable materials, additional enhancement of heat and mass transfer that occur when some of the impinging gas is removed through the material makes this option an atmctive one.

Here, we review the above effects and offer predictive correlations from literature which may be used in the design of high velocity impinging jet systems.  相似文献   

16.
建立RP—HPLC测定化妆品中自藜芦醇含量的方法。色谱柱为Shimadzu ODSC18柱(4.6mm×150mm,5m),流动相为甲醇:0.05%磷酸水溶液(50:50),等度洗脱,检测波长306nm,流速1mL/min,上样量10μL,柱温为室温。结果表明白藜芦醇在0~200mg/L呈良好的线性关系,相关系数为0.9997,护肤品样品平均加标回收率为98.8%,相对标准偏差为2.06%。本方法操作简便,结果准确可靠,适于化妆品中白藜芦醇的含量测定。  相似文献   

17.
The turbulent flow (Re = 1.5 × 105) near a rough wall with narrow apertures has been numerically analysed to study the effect of the aperture geometry and wall suction on the flow characteristics. The aperture entry geometry is characterized by roughness height and roughness width. The roughness height is varied from 0.3 to 1.2 mm and roughness width is varied from 2.6 to 4.0 mm. The wall suction is characterized by slot velocity which is varied from 0.25 to 5 m/s. The flow characteristics in terms of fluid streamlines, flow resistance, wall pressure, and wall shear have been presented for several cases. The results show that the flow through the apertures is dominated by a separation vortex that covers the aperture. As roughness height increased (or slope of the roughness), the vortex size increased. With increasing wall suction, the vortex size decreased and moved towards the aperture opening. The flow resistance characterized by pressure drop across the aperture is significantly high for very low wall suction and it is increased with increasing roughness slope. At higher wall suction the slot velocity and roughness geometry has less influence on flow resistance. Wall pressure and skin friction coefficients are dependent on the ratio of roughness height to width.  相似文献   

18.
Slot Jet Reattachment (SJR) nozzle is an extension of the Radial Jet Reattachment (RJR) concept used to provide high heat and mass transfer while minimizing flow exerted forces on the reattachment surface. The SJR is a slot jet nozzle with a bottom plate attached to it, which is machined to direct impinging flow at different angles to the surface. The drying characteristics of the SJR nozzle with four exit angles on a paper sample were studied for three Reynolds numbers, three temperatures and two initial moisture contents. Dry air was used as the jet fluid. Correlations to predict drying rates and moisture content for the SJR nozzle as a function of exit angle, temperature, Reynolds number and drying time, for a given initial moisture content, were developed. A comparison of the drying characteristics and net forces of the slot jet and SJR nozzles was also performed under the same flow power and surface peak pressure.  相似文献   

19.
Sparging technology is crucial in the dispersion of gases in liquids. In this work, it was demonstrated that an effective, controllable sparger can be made by assembling an array of flat parallel slot-nozzles which may offer new options for sparger design and operation. To illustrate the technique, a compact, ‘multiple slot disperser’ (MSD) having a slot width of and a total slot length of 1.26 m was assembled from a series of 5-mm-thick graphite plates. In water containing a low concentration of frother, a dense three-dimensional bubble plume was produced. The MSD generated consistently narrow bubble size distributions with well-defined median bubble diameters in the range 2.6-3.1 mm, equivalent to a range of gas flow rate from 11 to 26 std l/min. The bubble sizes were readily predictable from established single slot bubble size correlations. The method of construction also allows for simple maintenance, repair and replacement of individual components as needed.  相似文献   

20.
管式气流牵伸器是涤纶纺粘非织造布工程的核心设备,选择合适的牵伸器,不仅能提高产品质量,还能降低生产成本。在拟定纺制单丝纤度为0.75 dtex、纺速为5000 m/min的前提下,选择进气压力为0.4 MPa、喷口缝隙为0.4 mm的工艺条件,进行气流试验和带丝试验,试验结果显示:拉伸效果较好,能耗较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号