首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Measurements of particle number concentration (N), black carbon (BC), and PM 10 , PM 2.5 , and PM 1 levels and speciation were carried out at an urban background monitoring site in Barcelona. Daily variability of all aerosol monitoring parameters was highly influenced by road traffic emissions and meteorology. The levels of N, BC, PM X , CO, NO, and NO 2 increased during traffic rush hours, reflecting exhaust, and non-exhaust traffic emissions and then decreased by the effect of breezes and the reduction of traffic intensity. PM 2.5–10 levels did not decrease during the day as a result of dust resuspension by traffic and wind. N showed a second peak, registered in the afternoon and parallel to O 3 levels and solar radiation intensity, that may be attributed to photochemical nucleation of precursor gases. An increasing trend was observed for PM 1 levels from 1999 to 2006, related to the increase in the traffic flow and the diesel fleet in Barcelona. PM composition was highly influenced by road traffic emissions, with exhaust emissions being an important source of PM 1 and dust resuspension processes of PM 2.5–10 , respectively.  相似文献   

2.

Highly time-resolved measurements of PM2.5, its major constituents, particle size distributions (9 nm to 20 μ m), CO, NO/NO2, and O3, and meteorological parameters were made from February through November 2002, at the Baltimore Supersite at Ponca St. using commercial and prototype semi-continuous instruments. The average PM2.5 mass concentration during the study period was 16.9 μ g/m3 and a total of 29 PM2.5 pollution episodes, each in which 24-h averaged PM2.5 mass concentrations exceeded 30.0 μ g/m3 for one or more days, were observed. Herein, 6 of the worst episodes are discussed. During these events, PM2.5 excursions were often largely due to elevations in the concentration of one or two of the major species. In addition, numerous short-term excursions were observed and were generally attributable to local sources. Those in OC, EC, nitrate, CO, and NOx levels were often observed in the morning traffic hours, particularly before breakdown of nocturnal inversions. Moreover, fresh accumulation aerosols from local stationary combustion sources were observed on several occasions, as evidenced by elevations in elemental markers when winds were aligned with sources resulting in PM2.5 increments of 17 μ g/m3. Overall, the results described herein show that concentrations of PM2.5 and its major constituents vary enormously on time scales ranging from < 1 hr to several days, thus imposing a more highly complex pattern of pollutant exposure than can be captured by 24-hr integrated methods, alone. The data suggest that control of a limited number of local sources might achieve compliance with daily and annual PM2.5 standards.  相似文献   

3.
An atmospheric measurement campaign took place in the spring of 2006 to characterize the emission of particles from an integrated iron and steelmaking site. During the measurement campaign, the PM 10 daily limit value of 50 μ g m ? 3 was not exceeded during any day. However, excursions in PM 10 concentrations occurred over periods of a few hours which were associated with wind passing over the steelworks' site. Measurements with an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) showed six particle classes associated with emissions from steelmaking processes. Two of these were iron-rich, one showing internal mixing with nitrate, the other internally mixed with phosphate, which subsequent analysis identified as arising from the ironmaking sector and the hot and cold mills as the dominant sources, respectively. Other ATOFMS classes were rich in lead, zinc, and nickel, which were also associated with steelmaking sources. A Micro Orifice Uniform Deposit Impactor (MOUDI), used to measure particle size distributions over periods of 19–42 hours, showed two characteristic size distributions for iron, one bimodal with modes at 0.45 μ m and 4 μ m, the other unimodal centered at 6 μ m. In the former case, the smaller mode exhibited a peak for lead at the same particle size and in the case of the larger mode, phosphate and calcium also showed a peak at 4 μ m diameter, consistent with the ATOFMS findings. An additional particle type with a unimodal size distribution centered at about 1.2 μ m, with internally mixed Pb, Zn, and Cl but not Fe was also found.  相似文献   

4.

The hygroscopic behavior of Pasadena, CA aerosol was continuously measured from August 15 to September 15, 1999 using a tandem differential mobility analyzer. Two dry particle sizes were sampled, 50 nm and 150 nm in diameter; humidification of the dry aerosol was carried out at 89% relative humidity. Complex growth patterns were observed for both size modes, with aerosol distributions splitting from a single mode at times to more than 6 modes. Diurnal profiles for the observed multiple peaks were noted, with the greatest number of measurable growth modes being found during the late night and predawn hours for 50 nm particles. For 150 nm particles, more modes were present during the afternoon hours, with the humidified aerosol becoming bimodal during the late night/early morning hours. Growth factors, defined as the ratio of humidified particle diameter (at 89%) to dry diameter, were determined for modes with significant number concentrations. Average growth factors over the sampling period for the 2 particle sizes ranged from 1.0 to 1.6. Hygroscopic growth increased in the latter half of the sampling period when forest fires were present. In short, treating this complex urban aerosol as a combination of "less" and "more" hygroscopic fractions is an oversimplification.  相似文献   

5.

Fine particle (PM2.5) emission rates and compositions from gray iron metal casting foundry were characterized for No-Bake molds poured at the Research Foundry located at Technikon, LLC (McClellan, CA). For each mold, PM2.5 was collected for chemical analysis, and particle size distributions were measured by an Electrical Low Pressure Impactor (ELPI) to understand PM emissions during different part of the casting process. Molds prepared with phenolic urethane binders were poured with Class 30 gray cast iron at 1,427–1,480°C. PM2.5 was collected from the pouring, cooling, and shakeout processes for each mold. Most of the PM2.5 mass emitted from these processes was composed of carbonaceous compounds, including 37–67% organic carbon (OC) and 17–30% elemental carbon (EC). Oxides of aluminum (Al), silicon (Si), calcium (Ca), and iron (Fe) constituted 8–20% of PM2.5 mass, and trace elements (e.g., K, Ti, Mn, Cu, Zn, and Pb) contributed 3–6%. Chemical abundances in PM were different between pouring and shakeout for each discrete mold. PM2.5 mass emissions from pouring were 15–25% of the total from each discrete mold. Ultrafine particles (< 0.1 μm) contributed less than 1% of PM2.5 mass, but nearly all of the particle numbers. Different mechanisms for pouring and shakeout result in variations in chemical abundances and particle size distributions. The highest PM2.5 mass and number concentrations were observed when shakeout started. PM2.5 size distributions in mass concentration during shakeout contained particles in the tail of coarse particles (1.6–2.5 μm) and a vapor condensation mode (0.65–1.6 μm). Flame conditions, vaporization, thermal decomposition of organic materials, and the variability of mold breakup during shakeout affect PM emission rates. A detailed chemical speciation for size-segregated PM samples at different process points needs to be conducted at full-scale foundries to obtain emission factors and source profiles applicable to emission inventories, source receptor modeling, and implementation of emission standards.  相似文献   

6.

Particle size distributions were measured indoors and outdoors of a single, detached residence during the Fresno particulate matter exposure studies in winter (February 1-28, 1999) and spring (April 18-May 16, 1999). Data was collected for particle sizes ranging from about 0.01 to 2.5  相似文献   

7.

The separation characteristics of the PM2.5 aerosol size selectors used in speciation samplers developed for the U.S. EPA National PM2.5 Chemical Speciation Trends Network were evaluated under clean conditions. Measurement of particle penetration versus aerodynamic diameter was conducted using an APS 3320 in conjunction with a polydisperse test dust. The resulting penetration curves were integrated with assumed ambient particle size distributions (40 CFR Part 53, Subpart F) to obtain an estimate of measured mass concentration and to predict bias relative to the PM2.5 reference separator. The cutpoint of two sharp cut cyclones, from the family of cyclones developed by Kenny and Gussman (1997), compares favorably with the WINS, although possessing a slight tail that extends into the coarse particle mode. A second cyclone used by the Andersen Corp., AN 3.68, demonstrated the sharpest cut characteristics of the devices tested; however, it possesses a  相似文献   

8.
Particulate matter (PM) is associated with human health effects but the apparent toxicity of PM in epidemiological studies varies with season. PM toxicity may change due to seasonal shifts in composition or particle size distributions that in turn affect respiratory deposition efficiencies. In the current study, size-resolved PM composition was measured in the largest city (Fresno) in California's heavily polluted San Joaquin Valley during the summer (30 days) and winter (20 days) between 2006 and 2009 for 21 metals, organic carbon, elemental carbon, and 7 water-soluble ions. The Multiple-Path Particle Dosimetry model was applied to determine if seasonal variation in size-resolved composition influences respiratory deposition patterns. Mg, Al, S, V, Mn, Fe, Ni, Ba, SO4 2-, Na+, and Ca2+ had larger total deposition efficiencies (p < 0.004) during the summer versus the winter in all three regions of the respiratory tract. This trend results from increased relative concentrations of the target analytes per μg m?3 ambient PM1.8 concentration and would be detected with routine PM2.5 filter samples. V, Zn, Se, NO3 -, SO4 2-, and NH4 + also experienced seasonal size distribution shifts that enhanced the specific deposition efficiency in the tracheobronchial and pulmonary regions during the summer months (p < 0.05). This enhanced deposition would not be detected by routine filter samples because all of the size distribution changes occur at particle diameters <2.5 μm. This study demonstrates that changes to the particle size distributions (<2.5 μm) can enhance respiratory deposition efficiencies for trace metals and/or water-soluble ions and this may contribute to seasonal shifts in PM toxicity.  相似文献   

9.
Aerosol sampling is used to evaluate the health hazards associated with particles deposited in the human breathing system. Impactors, which are extensively employed as aerosol samplers, have low collection efficiency because of particle bounce. The impaction plate is typically coated with oil or grease to prevent particle bounce. However, such coating materials cannot sustain long-term heavy particle loading.

In this study, the impaction plate was recessed, forming a cavity filled with Trypticase Soy Agar (TSA) to reduce particle bounce and re-entrainment. An ultrasonic atomizing nozzle was employed to generate challenge aerosols. An Aerodynamic Particle Sizer (APS) was utilized to measure the number concentrations and the size distributions upstream and downstream of the size-selective devices. A multi-hole impactor and Personal Environmental Monitor PM 2.5 (PEM–PM 2.5 ) were used to evaluate particle bounce and heavy particle loading. Liquid type-Dioctyl phthalate (DOP), soluble solid type-potassium sodium tartrate tetrahydrate (PST) and insoluble solid type-polymethyl methacrylate (PMMA) were investigated, as were different impaction surfaces/surface combinations. The multi-hole impactor coated with silicone oil was compared with a TSA-filled plate. Laboratory results demonstrate that the solid PST particles bounced off the TSA-filled plate less than off the silicone-coated aluminum plate. This study also used a 700-μm-thick layer of silicone oil to prevent TSA dehydration. The experimental results revealed that the silicone-TSA double layer minimized PST particle bounce during the two-hour heavy sampling (mass concentration was around 7.22 mg/m 3 ). Moreover, the PEM-PM 2.5 impactor yielded consistent results when the silicone-TSA double layer method was used. These results are useful for designing bounce-free impaction substrates during heavy load sampling.  相似文献   

10.

Measurement methods for fine carbonaceous aerosol were compared under field sampling conditions in Flushing, New York during the period of January and early February 2004. In-situ 5- to 60-minute average PM 2.5 organic carbon (OC), elemental carbon (EC), and black carbon (BC) concentrations were obtained by the following methods: Sunset Laboratory field OC/EC analyzer, Rupprecht and Patashnick (R&P) series 5400 ambient carbon particulate monitor, Aerodyne aerosol mass spectrometer (AMS) for total organic matter (OM), and a two-wavelength AE-20 Aethalometer. Twenty-four hour averaged PM 2.5 filter measurements for OC and EC were also made with a Speciation Trends Network (STN) sampler. The diurnal variations in OC/EC/BC concentrations peaked during the morning and afternoon rush hours indicating the dominant influence of vehicle emissions. BC/EC slopes are found to range between 0.86 and 1.23 with reasonably high correlations (r > 0.75). Low mixing heights and absence of significant transported carbonaceous aerosol are indicated by the measurements. Strong correlations are observed between BC and thermal EC as measured by the Sunset instrument and between Sunset BC and Aethalometer BC. Reasonable correlations are observed among collocated OC/EC measurements by the various instruments.  相似文献   

11.
We present measurements of traffic-related pollutants made near the Long Island Expressway (LIE, I-495), in Queens, New York. The Aerodyne Research Inc. (ARI) mobile laboratory (AML) was deployed to map spatial and temporal gradients of gas-phase species and particulate matter (PM) associated with vehicular exhaust in the residential areas near the LIE. We observe that pollutant levels build up during the early morning hours under stable boundary layer conditions yet fall off quickly within 150 m downwind of the highway. An ARI soot particle aerosol mass spectrometer (SP-AMS) provided measurements of the size-resolved chemical composition of refractory black carbon (rBC) and the associated coating species. The average size distribution of the traffic related PM is characterized by a rBC mode centered at ~100 nm in vacuum aerodynamic diameter, D va (rBC mass fraction ~50%). A second rBC mode (rBC mass fraction ~5%) more heavily coated with organic material is also observed at D va ~500 nm. Positive matrix factorization (PMF) analyses of the traffic-related PM indicates that rBC is mostly associated with hydrocarbon-like organic (HOA) PM. These results are discussed in the context of chemically resolved size distributions and PMF analysis results performed on the SP-AMS stationary data collected at the Queens College site. Finally, we report emission indices (EI) for both fleet-average conditions and single vehicles, including several New York City Metropolitan Transit Authority (MTA) buses, sampled by the AML in “chase” mode during the study.

Copyright 2012 American Association for Aerosol Research  相似文献   

12.

Atmospheric sampling was conducted at a rural site near Egbert, about 70 km north of Toronto, Ontario, Canada from March 27 to May 8, 2003 to characterize the physical and chemical properties of the ambient aerosol in near real-time. The instrumentation included a tapered element oscillating microbalance (TEOM), an ultrafine condensation particle counter (UCPC), a scanning mobility particle sizer (SMPS), an aerodynamic particle sizer (APS), an aerosol mass spectrometer (AMS), and a particulate nitrate monitor (R&P 8400N) for aerosol measurements. Gas-phase non-methane hydrocarbon compounds (NMHCs) were measured by gas chromatograph-flame ionization detection (GC-FID). Filter samples were also collected for analysis of inorganic ions by ion chromatography (IC). Aerosol properties varied considerably depending upon meteorological conditions and airmass histories. For example, urban and industrial emissions advected from the south strongly influenced the site occasionally, resulting in higher particulate mass with the higher fractions of nitrate and organics. Cleaner northwesterly winds carried aerosols with relatively higher fractions of organics and sulfate. The AMS derived mass size distributions showed that the inorganic species in the particles with vacuum aerodynamic diameters between about 60 nm and 600 nm had mass modal vacuum aerodynamic diameters around 400–500 nm. The particulate organics often exhibited two modes at about 100 nm and 425 nm, more noticeable during fresh pollution events. The small organic mode was well correlated with gas-phase nonmethane hydrocarbons such as ethylbenzene, toluene, and propene, suggesting that the likely sources of small organic particles were combustion related emissions. The particulate nitrate exhibited a diurnal variation with higher concentrations during dark hours and minima in the afternoon. Particulate sulfate and organics showed evidence of photochemical processing with higher levels of sulfate and oxygenated organics in the afternoon. Reasonable agreement among all of the co-located measurements is found, provided the upper size limit of the AMS is considered.  相似文献   

13.
Abstract

Airborne mineral aerosols emitted in high-latitude regions can impact radiative forcing, biogeochemical cycling of metals, and local air quality. The impact of dust emissions in these regions may change rapidly, as warming temperatures can increase mineral dust production and source regions. As there exists little research on mineral dust emissions in high-latitude regions, we have performed the first study of the physico-chemical properties of mineral dust emitted from a sub-Arctic proglacial dust source, using a method tailored to the remote conditions of the Canadian North. Soil and aerosol samples (PM10 and deposited mineral dust) were collected in May 2018 near the Ä’äy Chù (Slims River), a site exhibiting strong dust emissions. WHO air quality thresholds were exceeded at several receptor sites near the dust source, indicating a negative impact on local air quality. Notably, temporally averaged particle size distributions of PM10 were very fine as compared to those measured at more well-characterized, low-latitude dust sources. In addition, mineralogy and elemental composition of ambient PM10 were characterized; PM10 elemental composition was enriched in trace elements as compared to dust deposition, bulk soil samples, and the fine soil fractions (d?<?53?µm). Finally, through a comparison of the elemental composition of PM10, dust deposition, and both fine and bulk soil fractions, as well as of meteorological factors measured during our campaign, we propose that the primary mechanisms for dust emissions from the Ä’äy Chù Valley are the rupture of clay coatings on particles and/or the release of resident fine particulate matter.

Copyright © 2019 American Association for Aerosol Research  相似文献   

14.

Single particle measurements were made in Baltimore, Maryland from March to December 2002 using a real-time single particle mass spectrometer, RSMS-3. Particle composition classes were identified that indicated how the aerosol composition changed with time. The results were compared with collocated instruments giving particle number concentrations and size distributions, sulfate, nitrate, organic, and elemental carbon mass concentrations and total mass. Examination of these measurements revealed several particulate matter (PM) events in which the 24 h averaged PM 2.5 mass exceeded 30 μ g/m 3 . Three of these events were studied in further detail by comparing number and mass concentrations obtained by RSMS-3 with standard methods. For all three events, the number concentrations obtained with RSMS-3 and a scanning mobility particle sizer were highly correlated (R 2 0.7). For the event characterized by a high sulfate mass concentration, the RSMS-3 provided an accurate measure of time-dependent nitrate and carbon mass concentrations, but not for sulfate and total mass. For the two events characterized by high carbon mass concentrations (one from a transcontinental wildfire and the other from stagnation during a period of high traffic), RSMS-3 provided an accurate measure of time-dependent nitrate mass, carbon mass and total mass when the aerosol was not dominated by particles outside the size limit of RSMS-3. While the time dependencies were strongly correlated, the absolute mass or number concentrations determined by RSMS-3 were sometimes off by a constant value, which permitted the relative detection efficiencies of some particle classes to be estimated. Other factors that inhibit reconciliation of mass- and number- based concentration measurements are discussed including the difficulty of detecting ammonium sulfate by laser ablation/ionization and the varying size ranges of different particle measurement methods.  相似文献   

15.
A novel optical instrument has been developed that estimates size segregated aerosol mass concentration (i.e., PM 10 , PM 4 , PM 2.5 , and PM 1 ) over a wide concentration range (0.001–150 mg/m 3 ) in real time. This instrument combines photometric measurement of the particle cloud and optical sizing of single particles in a single optical system. The photometric signal is calibrated to approximate the PM 2.5 fraction of the particulate mass, the size range over which the photometric signal is most sensitive. The electrical pulse heights generated by light scattering from particles larger than 1 micron are calibrated to approximate the aerodynamic diameter of an aerosol of given physical properties, from which the aerosol mass distribution can be inferred. By combining the photometric and optical pulse measurements, this instrument can estimate aerosol mass concentrations higher than typical single particle counting instruments while providing size information and more accurate mass concentration information than traditional photometers. Experiments have shown that this instrument can be calibrated to measure aerosols with very different properties and yet achieve reasonable accuracy.  相似文献   

16.
Particulate matter (PM) from mining operations, engines, and ore processing may have adverse effects on health and well-being of workers and population living nearby. In this study, the characteristics of PM in an underground chrome mine were investigated in Kemi, Northern Finland. The concentrations and chemical composition of PM in size ranges from 2.5 nm to 10 µm were explored in order to identify sources, formation mechanisms, and post-emission processes of particles in the mine air. This was done by using several online instruments with high time-resolution and offline particulate sampling followed by elemental and ionic analyses. A majority of sub-micrometer particles (<1 µm in diameter, PM1) originated from diesel engine emissions that were responsible for a rather stable composition of PM1 in the mine air. Another sub-micrometer particle type originated from the combustion products of explosives (e.g., nitrate and ammonium). On average, PM1 in the mine was composed of 62%, 30%, and 8% of organic matter, black carbon, and major inorganic species, respectively. Regarding the analyzed elements (e.g., Al, Si, Fe, Ca), many of them peaked at >1 µm indicating mineral dust origin. The average particle number concentration in the mine was (2.3 ± 1.4)*104 #/cm3. The maximum of particle number size distribution was between 30 and 200 nm for most of the time but there was frequently a distinct mode <30 nm. The potential origin of nano-size particles remained as challenge for future studies.

Copyright © 2018 The Authors. Published with license by Taylor & Francis  相似文献   


17.
Time-resolved fine particle concentrations of nitrate, sulfate, and black carbon were examined to assess the appropriateness of using regional data and calculated air exchange rates to model indoor concentrations of particles from outdoor sources. The data set includes simultaneous, sub-hourly aerosol composition measurements at three locations: a regional monitoring site in Fresno, California, inside of an unoccupied residence in Clovis, California, located 6 km northeast of the regional site, and immediately outside of this same residence. Indoor concentrations of PM2.5 nitrate, sulfate, and black carbon were modeled using varying sets of inputs to determine the influence of three factors on model accuracy: the constraints of the simplified indoor-outdoor model, measured versus modeled air exchange rates, and local versus regional outdoor measurements.

Modeled indoor concentrations captured the lag and attenuation in indoor concentrations as well as the differences among chemical constituents in the indoor-outdoor concentration relationships. During periods when the house was closed and unoccupied, use of air exchange rates calculated from the LBNL infiltration model in place of those directly measured did not contribute significantly to the error in the estimated indoor concentrations. Differences between ambient concentrations at the regional monitoring site and the immediate neighborhood contributed to estimation errors for sulfate and black carbon. Evaporation was the dominant factor affecting indoor nitrate concentrations. Even when limiting the model inputs to concentrations and meteorological parameters measured at the regional monitoring station, the modeled concentrations were more highly correlated with measured indoor concentrations than were the regional measurements themselves.  相似文献   

18.
Two coals with comparable mineral particle distributions, but different contents of Ca were blended and combusted. Mineral transformations and their effects on particulate matter smaller than 10 μm (PM10) emissions were investigated during the combustion of single and blended coals. Combustion experiments were carried out at 1450 °C in air atmosphere using a lab-scale drop tube furnace (DTF). The particle size distributions (PSD), morphologies, elemental compositions, and chemical composition of minerals in coal and PM were analyzed. The results indicate that emissions of PM smaller than 1 μm (PM1) and particulate matter sized between 1 and 10 μm (PM1–10) are reduced compared to their calculated linear results during combustion. The transformation of P, S, Al, and Si from submicron particles to PM larger than 1 μm (PM1+) reduces PM1 emissions. The transformation of Ca, Fe, Al, and Si from PM10 to particles larger than 10 μm (PM10+) reduce PM1–10 emissions. The high concentration of Ca in coal blends enhances the liquid phase percentage produced during combustion, and as a result, improves both the adhesion of volatilized P, S, Al, and Si on the sticky surface of large particles to be transformed to PM1+, and the probability of collision and coalescence of particles to form larger particles of Ca–Fe–Al–Si, Ca–Al–Si, or Fe–Al–Si. Thus, as Ca, Fe, Al, and Si are transformed into PM10+. PM1 and PM1–10 emissions are reduced accordingly.  相似文献   

19.

Open pore polyurethane foam (PUF) can be used effectively as a substrate for conventional inertial impactors with both high particle collection efficiency and minimal vaporization of semi-volatile particle components. The collection characteristics of PUF as an impaction substrate were studied as a function of PUF density, Reynolds number, impaction substrate diameter, and nozzle-toplate distance. The conventional impaction substrate of the PM2.5 Harvard Impactor sampler was replaced with the PUF substrate. The use of PUF resulted in significant changes in the collection efficiency curve, with the 50% cut-off size (  相似文献   

20.
Three differing techniques were used to measure ambient black carbon (BC) aerosols in downtown Toronto through 20 December 2006 to 23 January 2007. These techniques were thermal analysis, as performed by a Sunset Labs OCEC Analyzer (OCEC); light attenuation, as performed by an Aethalometer (AE); and photoacoustic analysis, as performed by a Photoacoustic Instrument (PA). These measurements of ambient PM 2.5 were used to investigate the effects of coating thickness on BC Mass Absorption Cross-section (MAC). MAC values were determined by comparing 880 nm and 370 nm AE measurements and PA measurements of b abs (absorption coefficient, Mm–1) to the OCEC measurements. Based on mass size distributions and supporting criteria, the PM 2.5 was classified as fresh, semi-aged, or aged. The average MAC values in these categories, based on the PA measurements, were 9.3 ± 1.8, 9.9 ± 2.0, and 9.3 ± 2.2 m 2 /g (mean ± standard deviation), respectively, suggesting that any difference in coating thickness as a result of aging, on the time scale observed, did not produce a difference in MAC. In a second type of experiment, a thermodenuder was installed upstream of the AE, PA, and OCEC and samples were heated to 340°C in order to evaporate volatile and semi-volatile components within the coating. Based on the PA measurements, the average MAC values of these heated samples, for the fresh, semi-aged, and aged categories were 7.7 ± 2.2, 6.9 ± 2.2, and 9.1 ± 2.0 m 2 /g, respectively. Similar differences in MAC were also observed by the AE. The decrease in MAC in the fresh and semi-aged samples was interpreted in terms of the degree of coating of the PM 2.5 . Results agreed well with predictions made by absorption amplification theory and had ramifications for calibration of filter-base attenuation and photoacoustic instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号