首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The reliability of the equipment is very important for the large petrochemical industry, especially for oil pump as the core component of driving equipment. In order to reduce the loss of the enterprise brought by equipment failure, it is need to find those reasons which may lead to equipment failure and take some preventive measures as early as possible. This article analyzes the failure of the oil transfer pump system in CNPC work zone systematically, qualitatively and quantitatively, using the fault tree analysis method. Then 105 groups of minimal cut sets are found, and the probability of system failure after a certain time operation is calculated by using Weibull distribution. Combined with specific requirements of reliability, the work zone may make a scientific decision of plant maintenance cycle according to the conclusion.  相似文献   

2.
This paper examines the computation of optimal preventive maintenance policies for systems which are viewed over a horizon whose length is modeled as being random. Preventive maintenance is modeled as a new mode of failure which has a different distribution of time required to make repair.

For the simple case of a system made up of one component, general conditions are developed which assure optimality of the preventive maintenance policy. Preventive maintenance for a two component-one cold standby system is also analyzed to illustrate the application of our methodology on more complex systems. Computational examples are included to emphasize the generality and tractability of this approach to reliability modeling.  相似文献   

3.
Maintenance management has a direct influence on equipment reliability and safety. However, a large portion of traditional maintenance models and reliability analysis methods usually assumes that only perfect maintenance is performed on the system and the system will restore to as good as new regardless of the kind of preventive maintenance work‐order that is performed. This is not practical in reality and may result in an inaccurate parametric estimation. The research objective of this paper is to develop a maximum likelihood estimation method to obtain more accurately estimated parameters based on the operational data of manufacturing systems, taking into consideration the difference between perfect and imperfect maintenance work‐orders. Weibull distribution is specifically studied for this purpose. A practical case study based on industrial operational data from an automotive assembly line is performed to illustrate the implementation and efficiency of the proposed reliability estimation method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Preventive maintenance (PM) is an effective approach to promoting reliability. Time-based and condition-based maintenance are two major approaches for PM. No matter which approach is adopted for PM, whether a failure can be early detected or even predicted is the key point. This paper presents the experimental results of a failure prediction method for preventive maintenance by state estimation using the Kalman filter on a DC motor. The rotating speed of the motor was uninterruptedly measured and recorded every 5 min from 1 April until 20 June 2001. The measured data are used to execute Kalman prediction and to verify the prediction accuracy. The resultant prediction errors are acceptable. Futhermore, the shorter the increment time for every step used in Kalman prediction, the higher prediction accuracy it achieves. Failure can be prevented in time so as to promote reliability by state estimation for predictive maintenance using the Kalman filter.  相似文献   

5.
This paper deals with the optimisation of two-levels assembly system planning. This system is composed of a single machine, inventories at levels 1 and 2 for stock keeping components to assembly and final assembled product. It assumed that the machine processes all assembly operations and is subject to random failure. A mathematical model is developed to incorporate a supply planning for two-level assembly systems under stochastic lead times and breakdowns machine. A preventive maintenance plan is carried out to reduce the frequency of the corrective maintenance actions. This work has double goals. The first one is to find the optimal order release dates for the different components at level 2 and the optimal preventive maintenance plan. The second one is to quantify the risk due to machine failures which have an impact on the lead-time of the finished product. To consider the maintenance actions, preventive maintenance actions are perfectly performed to restore the machine to state “as good as new”, minimal repair is considered at failure. The model minimises the total cost, which is the sum of inventory holding cost for components at levels 1 and 2, backlogging and inventory holding cost for the finished products and maintenance costs. To illustrate the effectiveness of the proposed model, different meta-heuristics are applied; the genetic algorithm shows the most suited to our analytical model, the optimal release date founded by this algorithm allows finding the optimal preventive maintenance plan. The obtained optimal maintenance planning is used in the risk assessment in order to find the threshold repair period that avoids lost profit.  相似文献   

6.
Optimization of maintenance policy using the proportional hazard model   总被引:2,自引:0,他引:2  
The evolution of system reliability depends on its structure as well as on the evolution of its components reliability. The latter is a function of component age during a system's operating life. Component aging is strongly affected by maintenance activities performed on the system. In this work, we consider two categories of maintenance activities: corrective maintenance (CM) and preventive maintenance (PM). Maintenance actions are characterized by their ability to reduce this age. PM consists of actions applied on components while they are operating, whereas CM actions occur when the component breaks down. In this paper, we expound a new method to integrate the effect of CM while planning for the PM policy. The proportional hazard function was used as a modeling tool for that purpose. Interesting results were obtained when comparison between policies that take into consideration the CM effect and those that do not is established.  相似文献   

7.
This paper deals with imperfect preventive maintenance (PM) optimisation problem. The system to be maintained is typically a production system assumed to be continuously monitored and subject to stochastic degradation. To assess such degradation, the proposed maintenance model takes into account both corrective maintenance (CM) and PM. The system undergoes PM whenever its reliability reaches an appropriate value, while CM is performed at system failure. After a given number of maintenance actions, the system is preventively replaced by a new one. Both CM as well as PM are considered imperfect, i.e. they bring the system to an operating state which lies between two extreme states, namely the as bad as old state and as good as new state. The imperfect effect of CM and PM is modelled on the basis of the hybrid hazard rate model. The objective of the proposed PM optimisation model consists on finding the optimal reliability threshold together with the optimal number of PM actions to maximise the average availability of the system. A mathematical model is then proposed. To solve this problem an algorithm is provided. A numerical example is presented to illustrate the proposed maintenance optimisation model.  相似文献   

8.
9.
The aim of this paper is to present a stochastic model to characterize the failure distribution of multi-unit systems when the current units state is imperfectly monitored. The definition of the hazard rate process existing with perfect monitoring is extended to the realistic case where the units failure time are not always detected (non-detection events). The so defined observed hazard rate process gives a better representation of the system behavior than the classical failure rate calculated without any information on the units state and than the hazard rate process based on perfect monitoring information. The quality of this representation is, however, conditioned by the monotony property of the process. This problem is mainly discussed and illustrated on a practical example (two parallel units). The results obtained motivate the use of the observed hazard rate process to characterize the stochastic behavior of the multi-unit systems and to optimize for example preventive maintenance policies.  相似文献   

10.
The traditional production model development assumed that all products are perfect quality and did not consider maintenance, which is far from reality. In practice, the production process may shift randomly from an in-control state to an out-of-control state during a production run, i.e. process deterioration. This paper considers both preventive maintenance and corrective maintenance which are used to increase the system reliability. The objective of this paper is to determine the optimal production run time and maintenance frequency while minimising the total cost under process deterioration and trade credit. This paper develops a theorem and an algorithm to solve the problem described, provides numerical analysis to illustrate the proposed solution procedure, and discusses the impact of various system parameters. A real case of hi-tech manufacturer is used to verify the model. It predicts a 10.36% decrease in total cost if the preventive maintenance decision is considered.  相似文献   

11.
In this paper, we consider a repairable system whose failures follow a non‐homogenous Poisson process with the power law intensity function. The system is subject to corrective and multiple types of preventive maintenance. A corrective maintenance has a minimal effect on the system; however, a preventive maintenance may reduce the system's age. We assume the effects of different preventive maintenance on the system are not identical and derive the likelihood function to estimate the parameters of the failure process as well as the effects of preventive maintenance. Moreover, we derive the conditional reliability and the expected number of failures between two consecutive preventive maintenance types. The proposed methods are applied to a real case study of four trucks used in a mining site in Canada. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The objective of the work presented in this paper is the determination of an optimal age-based maintenance strategy for wheel motor armatures of a fleet of Komatsu haul trucks in a mining application in Chile. For such purpose, four years of maintenance data of these components were analyzed to estimate their failure distribution and a model was created to simulate the maintenance process and its restrictions. The model incorporates the impact of successive corrective (on-failure) and preventive maintenance on necessary new component investments. The analysis of the failure data showed a significant difference in failure distribution of new armatures versus armatures that had already undergone one or several preventive maintenance actions. Finally, the model was applied to calculate estimated costs per unit time for different preventive maintenance intervals. From the resulting relationship an optimal preventive maintenance interval was determined and the operational and economical consequences and effects with respect to the actual strategy were quantified. The application of the model resulted in the optimal preventive maintenance interval of 14,500 operational hours. Considering the failure distribution of the armatures, this optimal strategy is very close to a run-to-failure scenario.  相似文献   

13.
Availability appears to be a more appropriate measure than reliability for measuring the effectiveness of maintained systems because it includes reliability as well as maintainability. This paper is a survey and a systematic classification of the literature relevant to availability. Emphasis in this paper is centered on the current state of the art on a variety of topics related to availability. Among the topics discussed are: the definition and concepts of the availability; the probability density functions (pdf) of failure times, the pdf of repair times, system configurations, and the various approaches employed to obtain the availability models; confidence intervals of availability; effect of preventive maintenance policies on availability; availability parameters in the model; and systems optimization.  相似文献   

14.
This paper presents a special case of integration of the preventive maintenance into the repair/replacement policy of a failure-prone system. The machine of the considered system exhibits increasing failure intensity and increasing repair times. To reduce the failure rate and subsequent repair times following a failure, there is an incentive to perform preventive maintenance on the machine before failure. When a failure occurs, the machine can be repaired or replaced by a new one. Thus the machine's mode at any time can be classified as either operating, in repair, in replacement or in preventive maintenance. The decision variables of the system are the repair/replacement switching age or number of failures at the time of the machine's failure and the preventive maintenance rate. The problem of determining the repair/replacement and preventive maintenance policies is formulated as a semi-Markov decision process and numerical methods are given in order to compute optimal policies which minimise the average cost incurred by preventive maintenance, repair and replacement over an infinite planning horizon. As expected, the decisions to repair or to replace the machine upon a failure are modified by performing preventive maintenance. A numerical example is given and a sensitivity analysis is performed to illustrate the proposed approach and to show the impact of various parameters on the control policies thus obtained.  相似文献   

15.
This paper develops reliability and maintenance models for a single‐unit system subject to hard failures under random environment of external shocks. Motivated by the observations of shot‐noise process in practice, the impact of shock damage on system failure behavior is characterized by random hazard rate increments. To remove such negative impact, imperfect preventive repair is performed periodically, and preventive replacement is performed after several repairs. Considering the joint effects of both random shocks and imperfect repair on the system hazard rate, we derive recursive equations for the system reliability function. Furthermore, we investigate the optimal maintenance policy that minimizes the expected cost per unit time of the system. The applicability of the reliability and maintenance model is validated by a case study on a wind turbine system.  相似文献   

16.
For the ‘under maintained’ and ‘over maintained’ problems of traditional preventive maintenance, a new predictive maintenance policy is developed based on process data in this article to overcome these disadvantages. This predictive maintenance method utilizes results of probabilistic fault prediction, which reveals evolvement of the system's degradation for a gradually deteriorating system caused by incipient fault. Reliability is calculated through the fault probability deduced from the probabilistic fault prediction method, but not through prior failure rate function which is difficult to be obtained. Moreover, the deterioration mode of the system is determined by the change rate of the calculated reliability, and several predictive maintenance rules are introduced. The superiority of the proposed method is illustrated by applying it to the Tennessee Eastman process. Compared with traditional preventive maintenance strategies, the presented predictive maintenance strategy shows its adaptability and effectiveness to the gradually deteriorating system.  相似文献   

17.
This paper considers a repairable system which undergoes preventive maintenance (PM) periodically and is minimally repaired at each failure. Most preventive maintenance models assume that the system improves at each PM so that the hazard rate is reduced to that of a new system or to some specified level. In this paper, we consider the situation where each PM relieves stress temporarily and hence slows the rate of system degradation, while the hazard rate of the system remains monotonically increasing. The optimal number and period for the periodic PM that minimize the expected cost rate per unit time over an infinite time span are obtained. We also consider the case when the minimal repair cost varies with time. Explicit solutions for the optimal periodic PM are given for the Weibull distribution case.  相似文献   

18.
考虑具有修理设备可失效可更换和修理延迟策略且由两个不同型部件组成冷贮备可修系统,利用Markov更新过程理论和全概率分解技术,得到了系统的稳态可用度、首次故障前平均时间、稳态故障频度以及系统等待修理的概率,并且通过引入修理设备的“广义忙期”,获得了修理设备的稳态不可用度和稳态更换频度.最后以数值实例分析了修理延迟时间和修理设备的失效率对系统可靠性指标的影响.在工程应用中特别感兴趣的是稳态可靠性数量指标,希望本文所得结果对系统的优化设计和更换维修提供有用的信息.  相似文献   

19.
In this paper, a supply chain system is viewed as a maintainable system, and the economic-statistical design of a likelihood ratio control chart with a maintenance application is considered for this system. The supply chain system is described by a three-state: normal state, warning state and failure state. A likelihood ratio control chart is used to monitor the system given that only categorical observations can be obtained. When the chart signals, a full inspection is performed to determine the actual system state (normal or warning), and preventive maintenance is immediately performed in the warning state. In addition, the supply chain system must be corrected upon failure (i.e. corrective maintenance), and should be maintained in a scheduled time (i.e. planned maintenance). A mathematical model is developed for the joint optimisation of the control chart parameters and planned maintenance time based on renewal theory. An example is presented to illustrate how to determine the optimal design parameters. We also investigate the effect of coefficients and statistical constraints on the decision variables and the expected cost.  相似文献   

20.
Predictive maintenance (PdM) is an effective means to eliminate potential failures, ensure stable equipment operation and improve the mission reliability of manufacturing systems and the quality of products, which is the premise of intelligent manufacturing. Therefore, an integrated PdM strategy considering product quality level and mission reliability state is proposed regarding the intelligent manufacturing philosophy of ‘prediction and manufacturing’. First, the key process variables are identified and integrated into the evaluation of the equipment degradation state. Second, the quality deviation index is defined to describe the quality of the product quantitatively according to the co-effect of manufacturing system component reliability and product quality in the quality–reliability chain. Third, to achieve changeable production task demands, mission reliability is defined to characterise the equipment production states comprehensively. The optimal integrated PdM strategy, which combines quality control and mission reliability analysis, is obtained by minimising the total cost. Finally, a case study on decision-making with the integrated PdM strategy for a cylinder head manufacturing system is presented to validate the effectiveness of the proposed method. The final results shows that proposed method achieves approximately 26.02 and 20.54% cost improvement over periodic preventive maintenance and conventional condition-based maintenance respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号