首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
研究NBR中丙烯腈含量对受阻酚AO-60/NBR复合材料物理性能和动态力学性能的影响。结果表明,受阻酚AO-60与丙烯腈质量分数为0.41的NBR相容性较差,而与丙烯腈质量分数为0.34和0.26的NBR相容性较好;与NBR硫化胶相比,受阻酚AO-60/NBR复合材料的tanδ峰值和阻尼峰面积增大,当NBR丙烯腈质量分数为0.34和0.26时,复合材料阻尼性能提高更为显著;受阻酚AO-60可显著提高丙烯腈质量分数为0.34的NBR硫化胶的拉伸强度和拉断伸长率。  相似文献   

2.
研究受阻酚AO-60/NBR/溴化酚醛树脂(BPF)复合材料的结构与性能。结果表明:BPF可以改善NBR与受阻酚AO-60间的相容性,受阻酚AO-60以0.2~0.5μm的尺寸分散在NBR/BPF基体中,分散比较均匀;随着体系中受阻酚AO-60用量的增大,受阻酚AO-60/NBR/BPF复合材料的玻璃化温度大幅提高,这归因于受阻酚AO-60与基体间形成了强烈的分子间作用力;受阻酚AO-60/NBR/BPF复合材料表现出较高的损耗因子、宽有效阻尼温域和良好的物理性能。  相似文献   

3.
以受阻酚AO-60为填充材料,考察了其用量对氯化聚乙烯(CM)弹性体/受阻酚复合材料耐老化性能、硫化特性、力学性能和分散性的影响。结果表明,随着受阻酚AO-60用量的增加,复合材料的耐老化性能变好,拉断伸长率降低。当AO-60用量为30份时,拉伸强度为16.7MPa;撕裂强度为38.5kN/m。由炭黑分散度测定仪观察,AO-60用量在30份以下时,分布效果较好;AO-60用量在50份以上时,与CM基体出现相分离。综合考虑,AO-60用量为30份时为宜。  相似文献   

4.
在混炼型聚氨酯(MPU)中加入受阻酚AO-80制备AO-80/MPU复合材料,并对其性能进行研究。结果表明:受阻酚AO-80与MPU的热力学相容性良好;随着受阻酚AO-80用量的增大,受阻酚AO-80/MPU复合材料的玻璃化温度逐渐向高温方向移动;与纯MPU相比,复合材料的损耗因子最大值增大,有效阻尼温域拓宽,物理性能下降,阻尼性能明显提高;当受阻酚AO-80用量为40份时,复合材料的阻尼性能和综合物理性能良好。  相似文献   

5.
丁腈橡胶/聚氯乙烯/受阻酚AO-60共混物的结构与性能   总被引:4,自引:1,他引:3  
用差示扫描量热法、X射线衍射法、扫描电子显微镜及元素分析法分析了丁腈橡胶(NBR)/聚氯乙烯(PVC)/四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯(AO-60)共混物的结构,并研究了共混物的阻尼性能及力学性能。结果表明,当AO-60用量小于50份时,其分子在基体中以非晶态形式存在;当AO-60用量超过50份时,过量的AO-60形成聚集体并在基体中形成少量的晶体;NBR/PVC/AO-60共混物内部呈现“海相-岛相”结构,连续相主要是NBR,而分散相主要是PVC与AO-60分子。NBR/PVC/AO-60共混物的损耗因子-温度曲线呈双峰特征,且随着AO-60用量的增加,峰值明显增大。当AO-60用量为50份时,NBR/PVC/AO-60共混物的综合力学性能较佳。  相似文献   

6.
采用熔融共混法制备受阻酚AO-80/聚醇型热塑性聚氨酯(PES-TPU)复合材料,并对其性能进行研究.结果表明,受阻酚AO-80/PES-TPU复合材料中,受阻酚AO-80呈无定形态.与PES-TPU基体的相容性良好;随着受阻酚AO-80用量的增大,受阻酚AO-80/PES-TPU复合材料的损耗因子峰值增大,损耗峰向高温方向移动,阻尼性能提高,但拉伸性能有所降低.  相似文献   

7.
在丁腈橡胶(NBR)中添加受阻酚AO-80和不同用量的炭黑N 220,制备了NBR/AO-80/N220复合材料,研究了复合材料的热性能、动态力学性能、物理机械性能和热老化性能。结果表明,NBR/AO-80/N220复合材料的玻璃化转变温度与NBR/AO-80复合材料相当,均高于纯NBR,且损耗峰峰值高于1.19,有效阻尼温域(损耗因子不小于0.3)为36℃左右,具有良好的阻尼性能;NBR/AO-80/N220复合材料的储能模量(E′)大于NBR/AO-80复合材料,且随着N 220用量的增加,E′逐渐增大,NBR/AO-80/N220复合材料的拉伸强度、100%定伸应力、300%定伸应力和撕裂强度均逐渐提高,N220的最佳用量为30份;NBR/AO-80/N220复合材料具有良好的耐热老化性能。  相似文献   

8.
制备了炭黑增强的受阻酚AO-80/氯化丁基橡胶(CIIR)/丁腈橡胶(NBR)复合材料,利用扫描电镜、动态力学分析仪、力学性能测试等手段研究了该复合材料的微观形态、力学性能、动态力学性能和阻尼性能及其关系。结果表明,受阻酚AO-80与CIIR/NBR共混胶的相容性良好。AO-80/CIIR/NBR复合材料呈现2个玻璃化转变温度,分别对应于CIIR相和NBR相。随着复合材料中AO-80用量的增加,NBR相的玻璃化转变温度大幅度向高温方向移动,其最大损耗因子从1.24提高到2.02,损耗峰面积不断增大,显示出优异的阻尼性能。炭黑的加入可有效提高AO-80/CIIR/NBR复合材料的力学性能,但其损耗因子明显降低。综合考虑阻尼性能和力学性能,复合材料中的炭黑用量以30份(质量)为宜。  相似文献   

9.
用熔融共混法制备了受阻酚AO-80/聚醚型热塑性聚氨酯弹性体(PET-TPU)阻尼材料,通过扫描电子显微镜、X射线衍射分析、差示扫描量热分析及动态力学热分析等研究了复合材料的微现结构、玻璃化转变温度、动态力学性能和力学性能.结果表明,AO-80与基质之间具有良好的相客性,且以分子水平溶解在基质中,处于无定型态.随着AO-80用量的增加,PET-TPU软段的玻璃化转变温度逐渐升高,硬段基本保持不变.AO-80/PET-TPU复合材料的损耗因子与温度曲线呈单峰形式,随着AO-80用量增加其峰值明显增大,并且转变峰向高温方向移动.AO-80的加入使PET-TPU基质的力学性能有所下降.  相似文献   

10.
在结合丙烯腈量不同的丁腈橡胶(NBR)中加入受阻酚AO-80和炭黑,制备了NBR/AO-80/炭黑(NBR/AO-80/CB)复合材料,用差示扫描量热仪、动态力学分析仪及物理机械性能测试等手段对复合材料的热性能、动态力学性能及物理机械性能进行了研究.结果表明,与纯NBR硫化胶相比,NBR/AO-80/CB复合材料的玻璃...  相似文献   

11.
将丁腈橡胶(NBR)/受阻酚AO-60杂化材料与天然橡胶(NR)共混,制备了NR/NBR/AO-60复合材料。利用透射电子显微镜(TEM)、差示扫描量热(DSC)、动态力学分析(DMA)、橡胶加工分析仪(RPA)、力学测试等手段研究了复合材料的微观结构和阻尼性能、物理机械性能。结果表明:复合材料中NR相和NBR/AO-60相之间具有一定的相容性,且当NR/NBR/AO-60比例为50/50/20时,出现了部分双连续相结构。随着NBR/AO-60比例的增加,复合材料在-20℃-40℃温度范围和0-150%应变范围内的损耗性能大幅增加,表现出满足隔震支座需求的高阻尼性能。其中,NR/NBR/AO-60(50/50/20)复合材料具有高阻尼、高强度、高柔性等特性,在橡胶隔震支座领域有很好的应用前景。  相似文献   

12.
受阻酚类抗氧剂的研究进展及发展趋势   总被引:3,自引:0,他引:3  
介绍了受阻酚类抗氧剂的作用机理和分类,综述了受阻酚类抗氧剂的研究概况,并对各种类型的受阻酚(单酚型,双酚型,多酚型以及复合型)作了详细的介绍,同时指出受阻酚类抗氧剂的发展趋势,强调应加强受阻酚类抗氧剂的研究。  相似文献   

13.
通过Hummers法并以硅烷偶联剂KH-550为改性剂制备改性氧化石墨烯(GO),以改性GO作为补强填料、丁基橡胶(IIR)为橡胶基体制备改性GO/IIR复合材料,并对其性能进行研究。结果表明:加入改性GO制备的复合材料的拉伸强度先增大后减小,损耗因子峰值增大,阻尼温域扩宽,隔声性能略有提升;复合材料可以有效抑制单层镀锌钢板的共振和吻合效应,基于其阻尼特性制备的约束阻尼隔声板隔声性能明显提高。  相似文献   

14.
以二苯基氯化磷和2,2′亚甲基双(4甲基6叔丁基苯酚)为原料,合成具有亚磷酸酯及受阻酚结构的复合型抗氧剂2(2羟基3叔丁基5甲基苄基)4甲基6叔丁基苯基二苯基亚磷酸酯,产率为65.12 %,产物经FT-IR表征,符合理论设计构型。将产物与商用抗氧剂2,6二叔丁基4甲基苯酚(BHT)进行热稳定性及DPPH自由基清除能力的对比测试,结果表明,产物较抗氧剂BHT分子量更高,热稳定性更好;同时其对DPPH自由基具有良好的清除效果,其抗氧化能力强于抗氧剂BHT。  相似文献   

15.
以低代超支化大分子和β(3,5二叔丁基4羟基苯基)丙酰氯为原料,合成了一端具有长链烷基、另一端具有两个受阻酚结构单元的新型超支化桥联受阻酚。采用红外光谱和核磁共振氢谱对合成的超支化桥联受阻酚进行了结构表征,重点研究了超支化桥联受阻酚在两类聚乙烯中的加工稳定性和热氧稳定性。结果表明,合成的两种超支化桥联受阻酚的化学结构与其设计的理论结构相一致,在两种聚乙烯中均有良好的加工稳定性和抗氧化性能,其性能优于具有类似结构的单酚抗氧剂1076;且随着端基烷基链的增长,在两种聚乙烯中的加工稳定性和抗氧化能力增加;超支化桥联受阻酚在高密度聚乙烯中的抗氧化性能略优于其在线形低密度聚乙烯中的抗氧化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号