首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Therapy-related acute myeloid leukemias with balanced translocations affecting the 11q23 chromosome region are one of the most serious complications of treatments with topoisomerase II inhibitor drugs as epipodophillotoxins and anthracyclines. 1,2-5 These cases are usually associated with short interval time from previous chemotherapies, absence of myeloid dysplastic phase, hyperleukocytosis and young age. We and others have recently identified and cloned the ALL1 gene at 11q23 band (also named MLL, HRX. Hrxt) which is consistently altered in t-AML following therapies with topo II targeting drugs. However, there are few reports of cases of t-AML, clinically and biologically similar to the subtype of leukemias secondary to exposure to topo II inhibitors drugs but without the involvement of the ALL1 gene. These observations suggest that genes other than ALL1 which are etiopathogenetically relevant for hematological neoplasias are located in this cytogenetic region.  相似文献   

2.
The major established cause of acute myeloid leukemia (AML) in the young is cancer chemotherapy. There are two forms of treatment-related AML (t-AML). Each form has a de novo counterpart. Alkylating agents cause t-AML characterized by antecedent myelodysplasia, a mean latency period of 5-7 years and complete or partial deletion of chromosome 5 or 7. The risk is related to cumulative alkylating agent dose. Germline NF-1 and p53 gene mutations and the GSTT1 null genotype may increase the risk. Epipodophyllotoxins and other DNA topoisomerase II inhibitors cause leukemias with translocations of the MLL gene at chromosome band 11q23 or, less often, t(8;21), t(3;21), inv(16), t(8;16), t(15;17) or t(9;22). The mean latency period is about 2 years. While most cases are of French-American-British (FAB) M4 or FAB M5 morphology, other FAB AML subtypes, myelodysplastic syndrome (MDS), acute lymphoblastic leukemia (ALL) and chronic myelogenous leukemia (CML) occur. Between 2 and 12% of patients who receive epipodophyllotoxin have developed t-AML. There is no relationship with higher cumulative epipodophyllotoxin dose and genetic predisposition has not been identified, but weekly or twice-weekly schedules and preceding l-asparaginase administration may potentiate the risk. The translocation breakpoints in MLL are heterogeneously distributed within a breakpoint cluster region (bcr) and the MLL gene translocations involve one of many partner genes. DNA topoisomerase II cleavage assays demonstrate a correspondence between DNA topoisomerase II cleavage sites and the translocation breakpoints. DNA topoisomerase II catalyzes transient double-stranded DNA cleavage and rejoining. Epipodophyllotoxins form a complex with the DNA and DNA topoisomerase II, decrease DNA rejoining and cause chromosomal breakage. Furthermore, epipodophyllotoxin metabolism generates reactive oxygen species and hydroxyl radicals that could create abasic sites, potent position-specific enhancers of DNA topoisomerase II cleavage. One proposed mechanism for the translocations entails chromosomal breakage by DNA topoisomerase II and recombination of DNA free ends from different chromosomes through DNA repair. With few exceptions, treatment-related leukemias respond less well to either chemotherapy or bone marrow transplantation than their de novo counterparts, necessitating more innovative treatments, a better mechanistic understanding of the pathogenesis, and strategies for prevention.  相似文献   

3.
We examined clinical, morphologic, and cytogenetic features and ALL-1 (MLL, Htrxl, HRX) gene rearrangements in 17 cases of secondary leukemia that occurred 11 months to 9 years from diagnoses of primary cancers in children who received topoisomerase II inhibitors or developed secondary leukemias typical of those associated with this therapy. Primary diagnoses included nine solid tumors and eight leukemias. Ten secondary leukemias were acute myeloid leukemia (AML), one was of mixed lineage, two were acute lymphoblastic leukemia (ALL), and four presented as myelodysplasia. Of 15 cases with 11q23 involvement, 11 (73%) were cytogenetically identifiable; four cases had molecular rearrangement only. By Southern blot, rearrangements within the ALL-1 gene were similar to sporadic cases. The results of this analysis suggest the following: (1) In most pediatric cases of topoisomerase II inhibitor-associated leukemia, there is disruption of the breakpoint cluster region of the ALL-1 gene at chromosomal band 11q23. (2) Exposure histories vary in secondary 11q23 leukemia, as the only topoisomerase II inhibitor was dactinomycin in one case, and, in another case, no topoisomerase II inhibitor was administered. (3) There is clinical, morphologic, cytogenetic, and molecular heterogeneity in pediatric secondary 11q23 leukemia. (4) There are some survivors of pediatric secondary 11q23 leukemia, but the outcome is most often fatal.  相似文献   

4.
We used single-strand conformation polymorphism (SSCP) analysis of p53 exons 4-8 to screen for possible mutations in 25 pediatric de novo leukemias with translocations of the MLL gene at chromosome band 11q23. Of the 25 patients, 21 were infants. Fifteen cases were acute myeloid leukemia (AML), eight were acute lymphoblastic leukemia (ALL), and two cases were biphenotypic. Nineteen cases were studied at diagnosis and six at time of relapse. p53 mutations were absent in all 19 cases studied at the time of diagnosis. The only mutation was a TGC-->TTC transversion (cys-->phe) at codon 141 in exon 5 in a case of infant ALL at relapse that occurred by subclone evolution after MLL gene translocation. We previously showed that p53 mutations are also absent in pediatric treatment-related leukemias with MLL gene translocations. The absence of p53 mutations at initial transformation may suggest that the anti-apoptotic effect of mutant p53 is not important in leukemias with MLL gene translocations. Alternatively, exogenous DNA damage may be the common feature in treatment-related and de novo cases. Since MLL gene translocations may occur through DNA repair and wild-type p53 is central to DNA repair, the absence of p53 mutations raises the possibility that wild-type p53, not mutant p53, may be important in the genesis of leukemias with these translocations.  相似文献   

5.
To study prognostic factors in infant acute myeloid leukemia (AML), we analyzed 44 children treated on Childrens Cancer Group protocols for MLL gene rearrangement by Southern blot, cytogenetic 11q23 abnormalities, and reactivity with monoclonal antibody 7.1. This antibody detects the human homologue of the rat NG2 chondroitin sulfate proteoglycan molecule, which has previously been reported to be expressed on human melanoma. NG2 has been found to be expressed on human leukemic blasts but not on other hematopoietic cells. In childhood AML, NG2 cell surface expression correlated with poor outcome and with some but not all 11q23 rearrangements. In childhood acute lymphoblastic leukemia, NG2 expression correlated with poor outcome and with balanced 11q23 translocations. In this study, 29 of 44 (66%) of infants with AML showed MLL rearrangement and, as expected, this group had a high incidence of French-American-British M4/M5 morphology (22/29). Of the cases tested, 35.1% (13/37) were NG2 positive. All (13/13) NG2-positive cases were rearranged at MLL, whereas only 46% (11/24) of NG2-negative cases had MLL rearrangement. NG2 expression did not correlate with poor outcome (P = .31); there was a trend towards a worse outcome with MLL rearrangement (P = .13). Thus monoclonal antibody 7.1 does not detect all cases of MLL rearrangement in infant AML.  相似文献   

6.
The treatment of cancer with alkylating drugs or topoisomerase II inhibitors can be responsible for the development of myelodysplastic syndromes and acute myelogenous leukemia. Alkylating agents such as melphalan and cisplatinum mainly produce damages at chromosomes 5 and 7 whereas topoisomerase II inhibitors-induced lesions essentially affect chromosomes 11 and 21. Rearrangements of the MLL gene at band 11q23 are frequently observed in human de novo myeloid and lymphoid leukemia as well as in leukemia or myelodysplasia secondary to therapy with drugs targetting topoisomerase II such as the epipodophyllotoxins. A relationship between the treatment with etoposide on teniposide and the development of translocations of the MLL gene has been clearly evidenced. The potential molecular basis of the chromosomal rearrangements implicating topoisomerase II and its inhibitors are discussed. The chemical structure of the inhibitors, their mechanism of action and the genes targetted by these drugs are presented. DNA cleavages induced directly by topoisomerase II inhibitors or by the drug induced apoptotic cellular response are responsible for nonrandom chromosomal aberrations and contribute to leukemogenesis.  相似文献   

7.
Leukemias with abnormalities in chromosome 11q23 occur frequently after exposure to topoisomerase II-reactive drugs. We investigated the characteristics and outcome of patients with de novo or secondary acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS) with abnormalities in chromosome 11q. Sixty-one patients had 11q abnormalities. Alterations involved 11q23 in 38 patients and other 11q abnormalities in 23. Sixteen patients had secondary disease, 12 involving 11q23, and four with other 11q abnormalities; 26 patients with de novo disease had 11q23 abnormalities and 19 other 11q abnormalities. The most common 11q23 abnormality was t(9;11), significantly more common in secondary (9/12) than in de novo (6/26) leukemias (p = 0.003). There were no significant differences in clinical characteristics between de novo and secondary groups involving 11q23. Five of 12 patients (42%) with secondary and 20/26 (77%) with de novo disease achieved complete remission (p = 0.05). Median survival was 6 weeks in the secondary group and 71 weeks in the de novo group (p = 0.001). There were no long-term survivors in either group. Results are similar when other 11q abnormalities are included. Adults with AML or MDS with 11q abnormalities secondary to prior chemotherapy have a worse prognosis than patients presenting de novo. However, 11q abnormalities define a population with a poor prognosis even when presenting de novo.  相似文献   

8.
Epipodophyllotoxins are associated with leukemias characterized by translocations of the MLL gene at chromosome band 11q23 and other translocations. Cytochrome P450 (CYP) 3A metabolizes epipodophyllotoxins and other chemotherapeutic agents. CYP3A metabolism generates epipodophyllotoxin catechol and quinone metabolites, which could damage DNA. There is a polymorphism in the 5' promoter region of the CYP3A4 gene (CYP3A4-V) that might alter the metabolism of anticancer drugs. We examined 99 de novo and 30 treatment-related leukemias with a conformation-sensitive gel electrophoresis assay for the presence of the CYP3A4-V. In all treatment-related cases, there was prior exposure to one or more anticancer drugs metabolized by CYP3A. Nineteen of 99 de novo (19%) and 1 of 30 treatment-related (3%) leukemias carried the CYP3A4-V (P = 0.026; Fisher's Exact Test, FET). Nine of 42 de novo leukemias with MLL gene translocations (21%), and 0 of 22 treatment-related leukemias with MLL gene translocations carried the CYP3A4-V (P = 0. 016, FET). This relationship remained significant when 19 treatment-related leukemias with MLL gene translocations that followed epipodophyllotoxin exposure were compared with the same 42 de novo cases (P = 0.026, FET). These data suggest that individuals with CYP3A4-W genotype may be at increased risk for treatment-related leukemia and that epipodophyllotoxin metabolism by CYP3A4 may contribute to the secondary cancer risk. The CYP3A4-W genotype may increase production of potentially DNA-damaging reactive intermediates. The variant may decrease production of the epipodophyllotoxin catechol metabolite, which is the precursor of the potentially DNA-damaging quinone.  相似文献   

9.
The age boundaries and prognostic factors that define the infant leukemias are still controversial. We therefore analyzed event-free survival according to age group in 96 children treated for acute lymphoblastic leukemia (ALL) and 51 treated for acute myeloid leukemia (AML) before the age of 2 years. The study population was registered in consecutive institutional trials of multiagent chemotherapy conducted between 1980 and 1994. Among infants with ALL, event-free survival was significantly poorer in the 0- to 6-month-old group than in patients treated between 6 and 12 months of age (P = 0.03), whose outcome was in turn inferior to that in the 12- to 18-month and 18- to 24-month age groups (P = 0.013). Leukemic cells from ALL patients younger than 12 months had a significantly higher frequency of 11q23/MLL abnormalities, as well as better growth in stromal cell culture, compared to lymphoblasts from the older groups (P < 0.01). The only independent predictor of adverse prognosis among infants diagnosed with ALL before age 12 months was the presence of an 11q23/MLL rearrangement (P = 0.03). These findings contrast sharply with results for the AML cohort, whose event-free survival did not vary significantly by age group (P = 0.58). Male sex (P = 0.01) and leukocyte count > or = 50 x 10(9/l) (P = 0.04), but not 11q23 abnormalities, were independently associated with a poorer outcome for children with AML younger than 12 months at diagnosis. Thus, in very young children with ALL (but not AML), the rearrangement status of the 11q23/MLL region supersedes age group as a determinant of treatment outcome.  相似文献   

10.
Phenotypic conversion from acute myeloid leukemia (AML) to acute lymphoblastic leukemia (ALL) is rare. A 38-year-old man was initially diagnosed as having AML (FAB-M2) associated with the t(8;21)(q22;q22) chromosomal abnormality. The blasts showed myeloperoxidase (MPO) activity and CD13 antigen expression. He showed complete remission after standard chemotherapy for AML. However, the patient relapsed with blasts showing ALL morphology (FAB-L1), MPO negativity, and CD19 antigen expression 33 months after cessation of AML therapy. Cytogenetic analysis at relapse was unsuccessful. Molecular analysis of ALL blasts revealed immunoglobulin heavy-chain gene and MLL gene rearrangements but no AML1 gene. MLL gene rearrangement or the 11q23 chromosomal abnormality has been associated with therapy-related leukemia. The subsequent ALL in our patient may have been induced by the chemotherapy including daunorubicin, known as a topoisomerase II inhibitor.  相似文献   

11.
Translocations at chromosomal band 11q23 characterize most de novo acute lymphoblastic leukemias (ALL) of infants, acute myeloid leukemias (AML) of infants and young children, and secondary AMLs following epipodophyllotoxin exposure. The chromosomal breakpoints at 11q23 have been cloned from isolated cases of de novo ALL and AML. Using an 859-base pair BamHI fragment of human ALL-1 complementary DNA that recognizes the genomic breakpoint region for de novo ALL and AML, we investigated two cases of secondary AML that followed etoposide-treated primary B-lineage ALL. In the first case, the translocation occurred between chromosomes 9 and 11 and the breakpoint at 11q23 localized to the same 9-kilobase region of the ALL-1 gene that is disrupted in most of the de novo leukemias. In the second case the translocation was between chromosomes 11 and 19. The breakpoint occurred outside of the ALL-1 breakpoint cluster region.  相似文献   

12.
11q23 translocations (t(11q23)) are recurring cytogenetic abnormalities in both acute myeloid leukemia (AML) and acute lymphoblastic leukemia, involving the same gene, ALL1 (or MLL). Mixed lineage antigen expression has been reported in these leukemias, but its frequency and clinical significance are unknown. We immunophenotyped leukemia cells from 19 adult de novo AML patients with t(11q23) by multiparameter flow cytometry. Translocations included t(6;11)(q27;q23), t(9;11)(p22;q23), t(9;11;19)(p22;q23;q13.3), t(2;11)(11;17)(q37;q11q23;q11), t(11;17)(q23;q25), t(11;19)(q23;p13.1), t(11;19)(q23;p13.3) and t(11;22)(q23;q11). FAB types were M4 and M5. The committed stem cell and myeloid antigens HLADr, CD4dim, CD11b, CD13, CD15, CD32, CD33, CD38 and CD64 were each expressed in 80-100% of cases, and the early stem cell and lymphoid antigens CD34, CD56, CD3, CD2 and CD7 in 42, 39, 16, 5 and 5%, respectively. Antigen expression frequencies did not differ from those in 443 adequately karyotyped M4 and M5 cases without t(11q23). Fifteen patients (79%) attained complete remission (CR); median CR duration and survival were 10.0 and 15.1 months. CR duration and survival did not correlate with antigen expression. In particular, patients with t(9;11) survived longer than those with other t(11q23) (median not reached vs 7.6 months; P = 0.048), but antigen expression did not differ in the two groups. Thus frequencies of lymphoid antigen expression are similar in AML with t(11q23) and in other FAB M4 and M5 cases, treatment outcome does not differ in t(11q23) cases with and without lymphoid antigen expression, and better outcome of patients with t(9;11) compared to other t(11q23) does not correlate with differences in antigen expression. Mixed lineage antigen expression is not a distinctive feature of AML with t(11q23).  相似文献   

13.
A 19-year-old male patient with virus associated hemophagocytic syndrome (VAHS) began receiving chemotherapy including etoposide (cumulative dose of 900 mg/m2 intravenously) and Ara-C (cumulative dose of 360 mg/m2 intravenously) in July 1994. He achieved complete remission, but developed acute myelomonocytic leukemia (AML, FAB M4) with t(9;11)(p22;q23) in March 1997 and a rearrangement of the MLL gene was also recognized. The MLL gene rearrangement is closely associated with secondary leukemia with an 11q23 translocation. It is highly likely that this case of AML was caused by the cytostatic treatment the patient received, including etoposide for VAHS.  相似文献   

14.
Gene rearrangements involving MLL (also known as ALL1, HRX, or Htrx) are among the most common molecular abnormalities associated with acute leukemia. These leukemias generally have one allele involved in a rearrangement, while the remaining allele is uninvolved and demonstrates a germline MLL configuration. In this study, we describe a leukemic cell line that does not have a germline MLL allele and thus cannot produce a normal MLL gene product. We show that the ML-1 cell line, derived from a patient with acute myeloid leukemia, has one allele involved in a t(6;11)(q27;q23), while the remaining MLL allele is deleted. Cloning of the genomic breakpoints on the derivative(6) and der(11) chromosomes demonstrated a balanced translocation between MLL on chromosome band 11q23 and AF6 on chromosome band 6q27. Sequence analysis of the derivative chromosomes revealed that a 186-bp segment of MLL intron 6, downstream of the breakpoint, had been duplicated, inverted, and inserted between MLL and AF6 on the der(11) chromosome. In light of the fact that ML-1 cells can be induced to differentiate along the granulocyte and macrophage lineages, the finding that ML-1 lacks a germline MLL allele demonstrates that a normal MLL gene is not required for survival, proliferation, or differentiation of this cell line.  相似文献   

15.
Infant acute leukemia, known to have a poor outcome with conventional therapy, usually has a molecular rearrangement at chromosome band 11q23. The 11q23 translocation partner is typically at 4q21 in infant ALL, but other 11q23 translocation partners occur in infant ALL and AML. The MLL gene at 11q23, and the AF4 gene at 4q21, have been extensively studied to identify heterogeneity of structural rearrangement and prognostic indicators, to look for clues as to etiology, and to improve therapy.  相似文献   

16.
17.
18.
19.
Thirty-two hematologic malignancies--nine with cytogenetically identified 12p abnormalities and 23 with whole or partial losses of chromosome 12--were selected for fluorescence in situ hybridization (FISH) investigations of 12p. These analyses revealed structural 12p changes, such as translocations, deletions, insertions, inversions and amplification, in 20 cases. ETV6 rearrangements were detected in three acute leukemias. One acute undifferentiated leukemia had t(4;12)(q12;p13) as the sole anomaly. The second case, an acute myeloid leukemia (AML), displayed complex abnormalities involving, among others, chromosomes 9 and 12. The third case, also an AML, had an insertion of the distal part of ETV6 into chromosome arm 11q and into multiple ring chromosomes, which also contained chromosome 11 material, resulting in an amplification of a possible fusion gene. The fusion partners in these cases remain to be identified. Thirty-one additional breakpoints on 12p could be characterized in detail. The majority of these breaks were shown to result in interchromosomal rearrangements, possibly indicating the location of hitherto unrecognized genes of importance in the pathogenesis of hematologic malignancies. The FISH analyses disclosed terminal or interstitial 12p deletions in 18 cases. Seven myeloid malignancies showed deletions restricted to a region, including ETV6 and CDKN1B, which has been reported to be frequently lost in leukemias. In four cases, the deletions involved both these genes, whereas two AML displayed loss of CDKN1B but not ETV6, supporting previously reported findings indicating a region of deletion not including this gene. However, one myelodysplastic syndrome lacked one copy of ETV6 but not CDKN1B. Hence, we suggest a minimal region of deletion on 12p located between the ETV6 and CDKN1B genes.  相似文献   

20.
To define better the risk of epipodophyllotoxin-related acute myeloid leukemia (AML) after extended follow-up and to assess responses to intensive salvage therapy, all patients who developed this complication after treatment for acute lymphoblastic leukemia (ALL) or non-Hodgkin lymphoma (NHL) in consecutive clinical trials at St Jude Children's Research Hospital from 1979 to 1994 were studied. Cases with 'lineage switch' or 'clonal selection' were excluded. Epipodophyllotoxin-related AML developed in 32 of 1140 patients treated for ALL and in three of 332 treated for NHL; it was a first adverse event in 25 and two cases, respectively. The complication was diagnosed at 12-130 months (median 34 months) after the initiation of treatment with epipodophyllotoxins; all but one of the cases occurred within 73 months, indicating that the risk is negligible after 6 years. The predominant karyotypic feature was 11q23 translocations (71% of cases); 21q22 rearrangements were rare. In a stepwise Cox regression analysis, two factors increased the risk of this complication: weekly or twice weekly administration of epipodophyllotoxins (P < 0.001); and the administration of asparaginase immediately before epipodophyllotoxin therapy (P < 0.001). Initial responses to salvage therapy were comparable to those reported for de novo AML: 92% of the evaluable patients entered complete remission after combination treatment. Single-agent therapy with 2-chlorodeoxyadenosine induced complete or partial remissions in one-half of the patients treated. The long-term survival rate was dismal. Of the 17 evaluable patients treated exclusively with chemotherapy, only one is alive at 84 months, compared to three of 16 patients who underwent bone marrow transplantation (alive at 10, 23 and 73 months). Cases of epipodophyllotoxin-related AML constitute a unique clinical syndrome that will require innovative strategies for cure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号