首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although numerous experiments revealed an essential role of a lipid mediator, sphingosine-1-phosphate (S1P), in breast cancer (BC) progression, the clinical significance of S1P remains unclear due to the difficulty of measuring lipids in patients. The aim of this study was to determine the plasma concentration of S1P in estrogen receptor (ER)-positive BC patients, as well as to investigate its clinical significance. We further explored the possibility of a treatment strategy targeting S1P in ER-positive BC patients by examining the effect of FTY720, a functional antagonist of S1P receptors, on hormone therapy-resistant cells. Plasma S1P levels were significantly higher in patients negative for progesterone receptor (PgR) expression than in those positive for expression (p = 0.003). Plasma S1P levels were also significantly higher in patients with larger tumor size (p = 0.012), lymph node metastasis (p = 0.014), and advanced cancer stage (p = 0.003), suggesting that higher levels of plasma S1P are associated with cancer progression. FTY720 suppressed the viability of not only wildtype MCF-7 cells, but also hormone therapy-resistant MCF-7 cells. Targeting S1P signaling in ER-positive BC appears to be a possible new treatment strategy, even for hormone therapy-resistant patients.  相似文献   

3.
Estrogen is believed to be pre-initiator in the risk of breast cancer. The BRCA1 is a tumor suppressor gene associated with breast and ovarian cancer risk. This report describes functional analysis of two BRCA1 missense mutations (Asp67Glu and Thr1051Ser) observed in the familial breast/ovarian cancer patients in Thailand. Levels of luciferase activity of the two mutations were relatively lower than in the wild-type BRCA1. It is indicated that mutants may fail to promote the estrogen receptor dependent functions. It is presumed that estrogen and insulin/IGF-1 regulate c-Myc and cyclin D1 during breast cancer cell proliferation. It is also likely to affect ubiquitination mechanism. Since three affected cancer families carry the Asp67Glu mutation, it is believed that this type of mutation could have some effect on breast/ovarian cancer progression.  相似文献   

4.
Hyperglycaemia is a common metabolic alteration associated with breast cancer risk and progression. We have previously reported that BRCA1 restrains metabolic activity and proliferative response to IGF-I anabolic actions in breast cancer cells cultured in high glucose. Here, we evaluated the impact of normal physiological glucose on these tumour suppressive roles of BRCA1. Human breast cancer cells cultured in normal physiological and high glucose were treated with IGF-I (0–500 ng/mL). Cellular responses were evaluated using immunoblotting, co-immunoprecipitation, and cell viability assay. As we previously reported, IGF-I induced ACCA dephosphorylation by reducing the association between BRCA1 and phosphorylated ACCA in high glucose, and upregulated FASN abundance downstream of ACCA. However, these effects were not observed in normal glucose. Normal physiological glucose conditions completely blocked IGF-I-induced ACCA dephosphorylation and FASN upregulation. Co-immunoprecipitation studies showed that normal physiological glucose blocked ACCA dephosphorylation by increasing the association between BRCA1 and phosphorylated ACCA. Compared to high glucose, the proliferative response of breast cancer cells to IGF-I was reduced in normal glucose, whereas no difference was observed in normal mammary epithelial cells. Considering these results collectively, we conclude that normal physiological glucose promotes the novel function of BRCA1 as a metabolic restraint of IGF-I actions. These data suggest that maintaining normal glucose levels may improve BRCA1 function in breast cancer and slow down cancer progression.  相似文献   

5.
6.
Triple-negative breast cancer (TNBC) surpasses other BC subtypes as the most challenging to treat due to its lack of traditional BC biomarkers. Nearly 30% of TNBC patients express the androgen receptor (AR), and the blockade of androgen production and AR signaling have been the cornerstones of therapies for AR-positive TNBC. However, the majority of women are resistant to AR-targeted therapy, which is a major impediment to improving outcomes for the AR-positive TNBC subpopulation. The hypoxia signaling cascade is frequently activated in the tumor microenvironment in response to low oxygen levels; activation of the hypoxia signaling cascade allows tumors to survive despite hypoxia-mediated interference with cellular metabolism. The activation of hypoxia signaling networks in TNBC promotes resistance to most anticancer drugs including AR inhibitors. The activation of hypoxia network signaling occurs more frequently in TNBC compared to other BC subtypes. Herein, we examine the (1) interplay between hypoxia signaling networks and AR and (2) whether hypoxia and hypoxic stress adaptive pathways promote the emergence of resistance to therapies that target AR. We also pose the well-supported question, “Can the efficacy of androgen-/AR-targeted treatments be enhanced by co-targeting hypoxia?” By critically examining the evidence and the complex entwinement of these two oncogenic pathways, we argue that the simultaneous targeting of androgen biosynthesis/AR signaling and hypoxia may enhance the sensitivity of AR-positive TNBCs to AR-targeted treatments, derail the emergence of therapy resistance, and improve patient outcomes.  相似文献   

7.
Breast cancer is the most frequent malignancy diagnosed in women. Approximately 70% of breast tumors express the estrogen receptor (ER). Tamoxifen and aromatase inhibitors (AIs) are the most common and effective therapies for patients with ERα-positive breast cancer. Alone or combined with chemotherapy, tamoxifen significantly reduces disease progression and is associated with more favorable impact on survival in patients. Unfortunately, endocrine resistance occurs, either de novo or acquired during the course of the treatment. The mechanisms that contribute to hormonal resistance include loss or modification in the ERα expression, regulation of signal transduction pathways, altered expression of specific microRNAs, balance of co-regulatory proteins, and genetic polymorphisms involved in tamoxifen metabolic activity. Because of the clinical consequences of endocrine resistance, new treatment strategies are arising to make the cells sensitive to tamoxifen. Here, we will review the current knowledge on mechanisms of endocrine resistance in breast cancer cells. In addition, we will discuss novel therapeutic strategies to overcome such resistance. Undoubtedly, circumventing endocrine resistance should help to improve therapy for the benefit of breast cancer patients.  相似文献   

8.
Genes associated with growth factors were previously analyzed in a radiation- and estrogen-induced experimental breast cancer model. Such in vitro experimental breast cancer model was developed by exposure of the immortalized human breast epithelial cell line, MCF-10F, to low doses of high linear energy transfer (LET) α particle radiation (150 keV/μm) and subsequent growth in the presence or absence of 17β-estradiol. The MCF-10F cell line was analyzed in different stages of transformation after being irradiated with either a single 60 cGy dose or 60/60 cGy doses of alpha particles. In the present report, the profiling of differentially expressed genes associated with growth factors was analyzed in their relationship with clinical parameters. Thus, the results indicated that Fibroblast growth factor2 gene expression levels were higher in cells transformed by radiation or in the presence of ionizing radiation; whereas the fibroblast growth factor-binding protein 1gene expression was higher in the tumor cell line derived from this model. Such expressions were coincident with higher values in normal than malignant tissues and with estrogen receptor (ER) negative samples for both gene types. The results also showed that transforming growth factor alpha gene expression was higher in the tumor cell line than the tumorigenic A5 and the transformed A3 cell line, whereas the transforming growth factor beta receptor 3 gene expression was higher in A3 and A5 than in Tumor2 cell lines and the untreated controls and the E cell lines. Such gene expression was accompanied by results indicating negative and positive receptors for transforming growth factor alpha and the transforming growth factor beta receptor 3, respectively. Such expressions were low in malignant tissues when compared with benign ones. Furthermore, Fibroblast growth factor2, the fibroblast growth factor-binding protein 1, transforming growth factor alpha, the transforming growth factor beta receptor 3, and the insulin growth factor receptor gene expressions were found to be present in all BRCA patients that are BRCA-Basal, BRCA-LumA, and BRCA-LumB, except in BRCA-Her2 patients. The results also indicated that the insulin growth factor receptor gene expression was higher in the tumor cell line Tumor2 than in Alpha3 cells transformed by ionizing radiation only; then, the insulin growth factor receptor was higher in the A5 than E cell line. The insulin growth factor receptor gene expression was higher in breast cancer than in normal tissues in breast cancer patients. Furthermore, Fibroblast growth factor2, the fibroblast growth factor-binding protein 1, transforming growth factor alpha, the transforming growth factor beta receptor 3, and the insulin growth factor receptor gene expression levels were in stages 3 and 4 of breast cancer patients. It can be concluded that, by using gene technology and molecular information, it is possible to improve therapy and reduce the side effects of therapeutic radiation use. Knowing the different genes involved in breast cancer will make possible the improvement of clinical chemotherapy.  相似文献   

9.
10.
Estrogen receptor-positive (ER+) is the most common subtype of breast cancer. Endocrine therapy is the fundamental treatment against this entity, by directly or indirectly modifying estrogen production. Recent advances in novel compounds, such as cyclin-dependent kinase 4/6 inhibitors (CDK4/6i), or phosphoinositide 3-kinase (PI3K) inhibitors have improved progression-free survival and overall survival in these patients. However, some patients still develop endocrine resistance after or during endocrine treatment. Different underlying mechanisms have been identified as responsible for endocrine treatment resistance, where ESR1 gene mutations are one of the most studied, outstanding from others such as somatic alterations, microenvironment involvement and epigenetic changes. In this scenario, selective estrogen receptor degraders/downregulators (SERD) are one of the weapons currently in research and development against aromatase inhibitor- or tamoxifen-resistance. The first SERD to be developed and approved for ER+ breast cancer was fulvestrant, demonstrating also interesting activity in ESR1 mutated patients in the second line treatment setting. Recent investigational advances have allowed the development of new oral bioavailable SERDs. This review describes the evolution and ongoing studies in SERDs and new molecules against ER, with the hope that these novel drugs may improve our patients’ future landscape.  相似文献   

11.
Simple SummaryAdvances in molecular genetics have radically changed all aspects of cancer prevention, screening and treatment and, today, women who are suspected of being at risk of hereditary cancer should always undergo genetic counselling. Furthermore, today there is growing attention on the tumor suppressor genes BRCA 1 and BRCA2. In addition, there is growing attention on women who carry mutations of the tumor suppressor genes BRCA 1 and BRCA2 and undergo a prophylactic risk-reducing salpingo-oophorectomy. This paper explores the pathobiology of BRCA1\2 cancer genes in a translational perspective, focusing on molecular aspects of hormonal therapy in early menopausal women as well as on the latest evidence-based guidelines for clinicians. Physicians should counsel motivated patients who ask for relief from early menopausal symptoms about the risks and benefits of hormonal therapy, as well as tailoring and appropriate treatment for selected patients. AbstractAll cancers develop as a result of mutations in genes. DNA damage induces genomic instability and subsequently increases susceptibility to tumorigenesis. Women who carry mutations of BRCA 1 and BRCA2 genes have an augmented risk of breast and ovarian cancer and a markedly augmented probability of dying because of cancer compared to the general population. As a result, international guidelines recommend that all BRCA1\2 mutation carriers be offered risk-reducing bilateral salpingo-oophorectomy at an early age to reduce the risk of cancer and decrease the mortality rate of this high-risk population. NCCN guidelines recommend risk-reducing bilateral salpingo-oophorectomy in pre-menopausal women, between 35–40 years in BRCA1 mutation carriers and between 40–45 years in BRCA2 mutation carriers. Unfortunately, the well-documented reduction of cancer risk is counterbalanced by early sterility and premature ovarian failure with an early onset of secondary menopausal syndromes such as neuromotor, cardiovascular, cognitive and urogenital deficiency. Hormonal replacement therapy significantly compensates for hormonal deprivation and counteracts menopausal syndrome morbidity and mortality; however, some data suggest a possible correlation between hormonal medications and cancer risk, especially in BRCA1\2 carriers who undergo long-term regimens. Conversely, short-term treatment before the age of natural menopause does not appear to increase the cancer risk in BRCA1 mutation carriers without a personal history of breast cancer after prophylactic surgery. Few data are available on BRCA2 mutation carriers and more well-designed studies are needed. In conclusion, clinicians should propose short-term hormone replacement therapy to BRCA 1 carriers to counteract hormonal deprivation; personalized counselling should be offered to BRCA2 mutation carriers for a balance between the risks and benefits of the treatment.  相似文献   

12.
While tumoral Smad-mediated transforming growth factor β (TGFβ) signaling drives osteolytic estrogen receptor α-negative (ER-) breast cancer bone metastases (BMETs) in preclinical models, its role in ER+ BMETs, representing the majority of clinical BMETs, has not been documented. Experiments were undertaken to examine Smad-mediated TGFβ signaling in human ER+ cells and bone-tropic behavior following intracardiac inoculation of estrogen (E2)-supplemented female nude mice. While all ER+ tumor cells tested (ZR-75-1, T47D, and MCF-7-derived) expressed TGFβ receptors II and I, only cells with TGFβ-inducible Smad signaling (MCF-7) formed osteolytic BMETs in vivo. Regulated secretion of PTHrP, an osteolytic factor expressed in >90% of clinical BMETs, also tracked with osteolytic potential; TGFβ and E2 each induced PTHrP in bone-tropic or BMET-derived MCF-7 cells, with the combination yielding additive effects, while in cells not forming BMETs, PTHrP was not induced. In vivo treatment with 1D11, a pan-TGFβ neutralizing antibody, significantly decreased osteolytic ER+ BMETs in association with a decrease in bone-resorbing osteoclasts at the tumor-bone interface. Thus, TGFβ may also be a driver of ER+ BMET osteolysis. Moreover, additive pro-osteolytic effects of tumoral E2 and TGFβ signaling could at least partially explain the greater propensity for ER+ tumors to form BMETs, which are primarily osteolytic.  相似文献   

13.
14.
BRCA1 and BRCA2 are tumor suppressor genes with pivotal roles in the development of breast and ovarian cancers. These genes are essential for DNA double-strand break repair via homologous recombination (HR), which is a virtually error-free DNA repair mechanism. Following BRCA1 or BRCA2 mutations, HR is compromised, forcing cells to adopt alternative error-prone repair pathways that often result in tumorigenesis. Synthetic lethality refers to cell death caused by simultaneous perturbations of two genes while change of any one of them alone is nonlethal. Therefore, synthetic lethality can be instrumental in identifying new therapeutic targets for BRCA1/2 mutations. PARP is an established synthetic lethal partner of the BRCA genes. Its role is imperative in the single-strand break DNA repair system. Recently, Olaparib (a PARP inhibitor) was approved for treatment of BRCA1/2 breast and ovarian cancer as the first successful synthetic lethality-based therapy, showing considerable success in the development of effective targeted cancer therapeutics. Nevertheless, the possibility of drug resistance to targeted cancer therapy based on synthetic lethality necessitates the development of additional therapeutic options. This literature review addresses cancer predisposition genes, including BRCA1, BRCA2, and PALB2, synthetic lethality in the context of DNA repair machinery, as well as available treatment options.  相似文献   

15.
Epithelial splicing regulatory proteins 1 and 2 (ESRP1/2) control the splicing pattern during epithelial to mesenchymal transition (EMT) in a physiological context and in cancer, including breast cancer (BC). Here, we report that ESRP1, but not ESRP2, is overexpressed in luminal BCs of patients with poor prognosis and correlates with estrogen receptor α (ERα) levels. Analysis of ERα genome-binding profiles in cell lines and primary breast tumors showed its binding in the proximity of ESRP1 and ESRP2 genes, whose expression is strongly decreased by ERα silencing in hormone-deprived conditions. The combined knock-down of ESRP1/2 in MCF-7 cells followed by RNA-Seq, revealed the dysregulation of 754 genes, with a widespread alteration of alternative splicing events (ASEs) of genes involved in cell signaling, metabolism, cell growth, and EMT. Functional network analysis of ASEs correlated with ESRP1/2 expression in ERα+ BCs showed RAC1 as the hub node in the protein–protein interactions altered by ESRP1/2 silencing. The comparison of ERα- and ESRP-modulated ASEs revealed 63 commonly regulated events, including 27 detected in primary BCs and endocrine-resistant cell lines. Our data support a functional implication of the ERα-ESRP1/2 axis in the onset and progression of BC by controlling the splicing patterns of related genes.  相似文献   

16.
Breast cancer MCF-7 cell-line-derived mammospheres were shown to be enriched in cells with a CD44+/CD24– surface profile, consistent with breast cancer stem cells (BCSC). These BCSC were previously reported to express key sphingolipid signaling effectors, including pro-oncogenic sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1P3). In this study, we explored intracellular trafficking and localization of SphK1 and S1P3 in parental MCF-7 cells, and MCF-7 derived BCSC-enriched mammospheres treated with growth- or apoptosis-stimulating agents. Intracellular trafficking and localization were assessed using confocal microscopy and cell fractionation, while CD44+/CD24- marker status was confirmed by flow cytometry. Mammospheres expressed significantly higher levels of S1P3 compared to parental MCF-7 cells (p < 0.01). Growth-promoting agents (S1P and estrogen) induced SphK1 and S1P3 translocation from cytoplasm to nuclei, which may facilitate the involvement of SphK1 and S1P3 in gene regulation. In contrast, pro-apoptotic cytokine tumor necrosis factor α (TNFα)-treated MCF-7 cells demonstrated increased apoptosis and no nuclear localization of SphK1 and S1P3, suggesting that TNFα can inhibit nuclear translocation of SphK1 and S1P3. TNFα inhibited mammosphere formation and induced S1P3 internalization and degradation. No nuclear translocation of S1P3 was detected in TNFα-stimulated mammospheres. Notably, SphK1 and S1P3 expression and localization were highly heterogenous in mammospheres, suggesting the potential for a large variety of responses. The findings provide further insights into the understanding of sphingolipid signaling and intracellular trafficking in BCs. Our data indicates that the inhibition of SphK1 and S1P3 nuclear translocation represents a novel method to prevent BCSCs proliferation.  相似文献   

17.
Triple-negative breast cancer (TNBC) is defined based on the absence of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. Currently, chemotherapy is the major therapeutic approach for TNBC patients; however, poor prognosis after a standard chemotherapy regimen is still commonplace due to drug resistance. Abnormal tumor metabolism and infiltrated immune or stromal cells in the tumor microenvironment (TME) may orchestrate mammary tumor growth and metastasis or give rise to new subsets of cancer cells resistant to drug treatment. The immunosuppressive mechanisms established in the TME make cancer cell clones invulnerable to immune recognition and killing, and turn immune cells into tumor-supporting cells, hence allowing cancer growth and dissemination. Phytochemicals with the potential to change the tumor metabolism or reprogram the TME may provide opportunities to suppress cancer metastasis and/or overcome chemoresistance. Furthermore, phytochemical intervention that reprograms the TME away from favoring immunoevasion and instead towards immunosurveillance may prevent TNBC metastasis and help improve the efficacy of combination therapies as phyto-adjuvants to combat drug-resistant TNBC. In this review, we summarize current findings on selected bioactive plant-derived natural products in preclinical mouse models and/or clinical trials with focus on their immunomodulatory mechanisms in the TME and their roles in regulating tumor metabolism for TNBC prevention or therapy.  相似文献   

18.
In the United States, breast cancer is among the most frequently diagnosed cancers in women. Breast cancer is classified into four major subtypes: human epidermal growth factor receptor 2 (HER2), Luminal-A, Luminal-B, and Basal-like or triple-negative, based on histopathological criteria including the expression of hormone receptors (estrogen receptor and/or progesterone receptor) and/or HER2. Primary breast cancer treatments can include surgery, radiation therapy, systemic chemotherapy, endocrine therapy, and/or targeted therapy. Endocrine therapy has been shown to be effective in hormone receptor-positive breast cancers and is a common choice for adjuvant therapy. However, due to the aggressive nature of triple-negative breast cancer, targeted therapy is becoming a noteworthy area of research in the search for non-endocrine-targets in breast cancer. In addition to HER2-targeted therapy, other emerging therapies include immunotherapy and targeted therapy against critical checkpoints and/or pathways in cell growth. This review summarizes novel targeted breast cancer treatments and explores the possible implications of combination therapy.  相似文献   

19.
20.
The prevalence of breast cancer in young women (YWBC) has increased alarmingly. Significant efforts are being made to elucidate the biological mechanisms concerning the development, prognosis, and pathological response in early-onset breast cancer (BC) patients. Dysfunctional DNA repair proteins are implied in BC predisposition, progression, and therapy response, underscoring the need for further analyses on DNA repair genes. Public databases of large patient datasets such as METABRIC, TCGA, COSMIC, and cancer cell lines allow the identification of variants in DNA repair genes and possible precision drug candidates. This study aimed at identifying variants and drug candidates that may benefit Latin American (LA) YWBC. We analyzed pathogenic variants in 90 genes involved in DNA repair in public BC datasets from METABRIC, TCGA, COSMIC, CCLE, and COSMIC Cell Lines Project. Results showed that reported DNA repair germline variants in the LA dataset are underrepresented in large databases, in contrast to other populations. Additionally, only six gene repair variants in women under 50 years old from the study population were reported in BC cell lines. Therefore, there is a need for new approaches to study DNA repair variants reported in young women from LA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号