首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
燃烧场组分的测量对于燃烧诊断具有重要的研究意义。基于可调谐激光吸收光谱(TLAS)技术,采用中红外带间级联激光器(ICL)扫描一氧化碳(CO)的2060cm~(-1)(v=1←0,P20)吸收谱线,实现了对燃烧场CO浓度的测量。实验通过燃烧产物H2O的7154.35cm~(-1)和7467.77cm~(-1)吸收谱线的谱线强度比值反演燃烧场温度,以此修正测量环境下CO谱线强度参数,实现CO浓度的精确测量。首先介绍了TLAS测温验证实验,温度测量在各个设置温度台阶下的波动均小于45K,温度测量具有可靠性;其次开展CO浓度测量标定实验,CO测量浓度与标准气体浓度的误差在3%以内;最后针对甲烷/空气平焰炉在不同燃烧状态下进行CO浓度测量,实现0.35‰~4.5%范围内CO浓度的测量,检测灵敏度为0.035‰。实验验证了中红外吸收光谱技术实现燃烧场组分浓度测量的可行性和可靠性,有助于燃烧诊断的研究,具有较大的应用价值。  相似文献   

2.
邵欣 《红外与激光工程》2019,48(7):717001-0717001(6)
针对高炉煤气成分复杂、燃烧效率低、燃烧稳定性差的问题,提出了基于波长调制光谱(Wavelength Modulation Spectroscopy,WMS)的高炉煤气燃烧场温度测量方法。WMS具有抗噪声能力强、测量精度高和灵敏度好的特点,适用于高炉煤气燃烧场的温度测量。基于可调谐二极管激光吸收光谱技术的测量特点,以H2O为目标气体,选取波长位于1 391.67 nm和1 397.75 nm的吸收谱线,通过两个激光器时分复用的方式获取两条目标吸收谱线,对黑体炉和平面火焰燃烧炉进行温度测量,达到了实验验证的目的。实验结果表明,所提检测方案对高炉煤气所在500~2 000 K温度范围内都有较高的测量灵敏度,检测结果线性度优于99%。现场实验验证系统可满足高炉煤气的温度场测量等原位在线测量的应用,为后续的燃烧优化和节能减排奠定了基础。  相似文献   

3.
为了实现燃烧场温度的高精度测量,将可调谐半导体激光吸收光谱技术(TDLAS)与计算层析技术(CT)进行结合建立了 TDLAT温度测量系统.选用中心波长为1 388 nm和1 343 nm的DFB激光器,在10 kHz的扫描频率下利用32光路CT测量单元对三喷口燃烧器的甲烷预混火焰进行吸光度测量,并对激光吸收结果进行了二...  相似文献   

4.
基于激光吸收光谱技术的超声速气流参数测量   总被引:1,自引:0,他引:1       下载免费PDF全文
采用可调谐半导体激光吸收光谱(TDLAS)技术,针对超声速直连台隔离段内超声速气流温度、组分浓度、速度和质量流量进行了测量.选择H2O的两条吸收谱线7 185.597 cm-1和7 454.445 cm-1,采用直接吸收-分时扫描方式,测量流场静温为899 K,并结合吸收面积得到H2O的组分浓度20.7%.根据安装在流场上游和下游成60的两条光路,测量流场速度为1 205 m/s,结合壁面压力传感器,测量流场的质量流量为1 500.49 g/s,较真实值偏差为5.23%.TDLAS测量系统实现了对超声速气流多参数快速线测量.  相似文献   

5.
CO_2和CO被称为燃烧效率指示性气体,燃烧流场中CO_2的精确测量对工业燃烧过程的节能减排和发动机燃烧状态诊断等都具有重要意义.研究CO_2气体的高温光谱参数,包括:线强、自加宽系数、温度系数,可提高燃烧过程中CO_2浓度的测量精度和可靠性.为了获得可用于燃烧诊断的CO_2吸收线的高温光谱参数,基于可调谐半导体激光吸收光谱技术设计了一套最高温度可达2 073 K的精确控温控压气体光谱参数测量系统.采用该系统开展了CO_2R(50e)吸收线(中心频率为5 007. 787 cm-1)的高温光谱测量实验,获得了温度范围1212~1873 K内多个压强下的纯CO_2气体的大量高温吸收光谱,经热辐射背景扣除、基线拟合、时频转换、多线组合非线性最小二乘法拟合等数据处理过程,得到温度范围1 212~1 873 K内CO_2R(50e)吸收线的线强、自加宽系数及温度系数,其中线强不确定度1. 5%,自加宽系数不确定度小于4. 5%.这些参数是对现有数据库的补充和完善,对燃烧诊断中的CO_2浓度检测有很大帮助,能够满足燃烧过程中CO_2浓度精确反演的需求.  相似文献   

6.
CO2和H2O是大气中两种重要的温室气体,对生态系统中CO2和H2O的浓度进行在线监测可用于分析环境及气候变化。选择CO2和H2O的近红外吸收谱线,利用可调谐半导体激光吸收光谱技术结合自动增益调节技术设计了开放式CO2和H2O在线检测仪。在中国科学院禹城综合试验站进行了1238m光程下,20Hz时间分辨率的连续观测实验,结果表明自动增益调节解决了开放光路检测时探测信号幅度大幅变化问题。监测点的CO2浓度具有白天低,夜间高的日变化周期性。与同场地涡度相关系统的LI-7500对比测量,数据一致性较好。该检测技术灵敏度高、响应速度快、免采样,实现了大尺度区域生态系统中CO2和H2O浓度的稳定、连续、在线检测。  相似文献   

7.
利用可调谐半导体激光吸收光谱(TDLAS)技术在电站锅炉尾部烟道进行测量或者采取抽取式的测量方法,能够在一定程度上反映锅炉的燃烧状况,但并不直接、迅速,需要建立模型根据测量结果对炉膛内的燃烧状况进行计算.为了给燃烧诊断提供更直接的参考,需要对锅炉炉膛进行直接测量.选择1.3 μm附近的一对H2O谱线,设计了一套测量系统...  相似文献   

8.
将可调谐半导体激光吸收光谱(TDLAS)技术用于氧气(O2)浓度在线检测。以垂直腔表面发射半导体激光器(VCSEL)为系统光源,采用对射式结构,测量光程为60cm,选用760nm附近O2吸收谱线,实现O2浓度实时测量。连续72h测量表明,系统在短时间内具有较好的测量精度,长时间(大于4h)测量结果存在缓慢漂移。在对一次谐波(1F)信号均值和二次谐波(2F)信号峰值变化趋势分析的基础上,讨论了背景噪声随测量环境变化引起的测量误差;并在背景噪声幅频特性不变的前提下,利用最大互相关算法实时扣除背景噪声。5%浓度O260h测试发现,扣除背景噪声后,系统的最大相对测量误差由3.20%减小为1.82%,测量精度提高近1倍。  相似文献   

9.
宋俊玲  饶伟  王广宇  辛明原 《红外与激光工程》2019,48(3):306004-0306004(7)
可调谐半导体激光层析技术可以实现对燃烧流场温度和组分浓度的二维分布测量。提出了一种基于多条吸收谱线组合的燃烧场温度二维重建方法,该方法利用每条吸收谱线对温度的敏感度不同,采取优化组合的方式得到每组吸收谱线对最佳的重建温度区域。文中使用四条H2O吸收谱线,模拟了温度在300~1 500 K范围时高斯分布和随机分布温度二维重建,比较了采用双线法和多条吸收谱线组合方法的温度重建结果。结果表明:采用吸收谱线组合方法和双线法的温度重建误差分别为0.039 6和0.095 2,吸收谱线组合方法可以有效提高重建结果质量。在实际工程应用中,当可以提前预估流场温度重建范围的情况,采用文中提出的多条吸收谱线组合方法可以二维重建结果质量。  相似文献   

10.
基于TDLAS的气体温度测量   总被引:3,自引:2,他引:3  
介绍了基于可调谐半导体激光吸收光谱(TDLAS)的气体温度测量原理,选择了1对O2吸收谱线13 163.78 cm-1和13 164.18 cm-1,理论计算了此谱线对线强比值R与温度的关系,在搭建的高温实验装置上实现了O2温度和浓度的同时测量,并分析了压力对温度测量的影响。实验结果表明:在823~1 323 K内,温度测量的线性误差为0.65%。最大波动为±15 K,压力变化对温度测量的影响可忽略不计。  相似文献   

11.
为综合利用激光雷达的光学接收天线,设计了一种可工作于主动状态和被动状态的光学遥感测量系统。处于主动状态时,主振荡激光器辐射1 064 nm 的激光脉冲,经倍频输出523 nm 激光,泵浦罗丹明染料,实现调谐脉冲输出,脉冲最高频率10 Hz,脉冲宽度为3. 0 ns,染料激光器输出脉冲能量可达105 mJ,主振荡输出激光脉冲可达1. 08 J。处于被动状态时,利用大气透过的太阳光谱,选取2 个波长的光谱线,采用比例光谱技术,根据激光雷达光学天线接收的太阳光谱强度,反演大气中反应性气体的柱浓度,再计算体积浓度。系统用于测量SO2 和O3 ,应用结果表明此系统的测量数据与国家相关测量平台数据非常吻合。  相似文献   

12.
提出了基于波长调制光谱(WMS)方法实现非均匀燃烧场气体温度和H_2O组分浓度场二维重建的测量方法。利用实验测得的2f/1f信号,通过数值仿真与迭代实现了激光穿过非均匀燃烧场后积分吸光度的测量,进而利用重建算法实现了燃烧场的二维分布测量。选用H_2O的两组谱线对针对单高斯分布和阶跃分布模型开展了数值仿真研究,并采用频分复用方法在平面燃烧火焰中开展了实验研究。结果表明:基于WMS方法的二维重建测量精度较高,在单高斯分布模型中,7185.60cm~(-1)和7454.45cm~(-1)谱线对的温度和H_2O浓度的重建误差分别小于2%和2.5%;在对温度敏感的区间内,所选谱线对的重建误差较小,在对温度不敏感的区间内,重建误差较大;火焰中心区域的重建结果与预测值一致,温度重建误差小于3.2%,在温度阶跃变化的边缘区域,重建效果较差,原因在于WMS方法和代数迭代算法对温度阶跃变化流场不敏感。  相似文献   

13.
燃烧场温度的测量对于燃烧诊断具有重要意义。开展了基于可调谐半导体激光吸收光谱 (Tunable diode laser absorption spectroscopy, TDLAS)的在 线测温方法研究,基于双光束分时扫描技术,实现了双激光器协同工作与燃烧产物水汽 7154.35 cm$^{-1}$ 和7467.77 cm$^{-1}$两条吸收谱线的同时测量,并利用双线积分吸光度比值关系完成温度的精确反演, 满足燃烧场温度在线检测应用需要。开展了针对甲烷/空气预混平焰炉火焰温度的实时检测实验研究, 并与热电偶进行了测温对比分析,两种方法的测量具有较好的一致性,相对误差小于3.8\%,验证 了TDLAS技术对燃烧场温度非侵入式快速测量的可行性和可靠性。  相似文献   

14.
V2O5薄膜在连续激光防护中的应用研究   总被引:1,自引:0,他引:1  
骆永全  王伟平  罗飞 《应用激光》2005,25(6):381-383
用磁控离子溅射法在玻片上沉积了V2O5薄膜,并进行了X射线衍射和常温下光谱透过率测量。分别用1064nm和1319nm连续激光辐照样品,实时测量了V2O5薄膜的温度变化,以及由于温度变化引起相变后对激光透过率的变化。结果表明:在平均入射功率为8.1W、光斑直径2mm时,V2O5薄膜对1064nm激光的透过率由相变前的55%变为相变后的25.5%,响应时间约24ms;在平均入射功率为8.9W、光斑直径2mm时,其对1319nm激光的透过率由相变前的63%变为相变后的27.9%,响应时间约40ms。对实验结果进行了分析并介绍了V2O5薄膜的相变原理及其在激光防护上的应用。  相似文献   

15.
可调谐二极管激光吸收光谱层析成像(TDLAT)是一种重要的光学非侵入式燃烧诊断技术,可实现燃烧场2维横截面气体温度和浓度等流场参数分布的重建。该文将视觉Transformer(ViT)与多尺度特征融合引入TDLAT领域,研究有限数量测量数据与整个测量空间温度分布的非线性映射,提出基于级联ViT与多尺度特征融合的燃烧场温度层析成像网络(HVTMFnet)。该网络提取并融合TDLAT测量数据的局部-全局相关特征,实现整个测量空间的层次化温度分布重建。仿真实验与实际TDLAT系统实验均表明,HVTMFnet重建图像的质量优于现有的基于卷积神经网络(CNN)和基于残差网络的温度层析成像方案。与基于CNN的温度层析成像方案相比,HVTMFnet的重建误差能够降低49.2%~72.1%。  相似文献   

16.
研究了一种基于注入锁定技术的888 nm半导体激光器(LD)泵浦的高功率单频可调谐1 342 nm Nd:YVO4激光器。采用最大输出功率20 mW分布式反馈单频半导体1 342 nm激光器作为注入种子,利用lock-in (LI)技术,对LD端泵的Nd:YVO4环形腔激光器进行种子注入,实现了单频可调谐激光输出。激光器最大平均输出功率为13.9 W,测量的线宽为41 MHz,调谐范围为1 341.677 4~1 341.802 5 nm。x轴和y轴的光束质量M2因子分别为Mx2=1.30和My2=1.23。实验结果表明:与先前文献报道的注入锁定1 342 nm可调谐激光的结果相比,所需种子功率大幅减小,输出功率也有所提升。  相似文献   

17.
基于可调谐半导体吸收光谱的波长调制技术,建立了精确的吸收模型。通过两条已知吸收中心的吸收谱线,对标准具自由光谱范围进行标定,并利用更贴近激光器出光特性的描述模型,得到激光器频率-时间响应,结合实验室标定和HITEMP数据库的杂合吸收谱线参数,建立了可与实际吸收直接比较的精确模型,以诊断燃烧流场。本研究以H_2O为目标分子,选取吸收中心为7185.60 cm~(-1)和6807.83 cm~(-1)两条吸收线,利用扣除背景的归一化二次谐波信号峰值反演流场温度,并在管式高温炉上进行实验验证,最高测量温度为1500 K,相对误差小于3.1%。吸收模型的准确性决定了所测流场参数的准确性,该模型可应用到更为复杂的燃烧流场环境,实现流场参数的精确测量。  相似文献   

18.
为了研究铷蒸气激光中的线宽匹配技术,基于半导体制冷片(TEC)的温度控制技术设计了窄线宽可调谐单管半导体激光器.利用半导体激光器的温度漂移特性,使LD的激光光谱中心波长在780 nm附近(工作温度-6℃),采用体布拉格光栅(VBG)外腔结构改善了LD的激光光谱,获得了功率1.448 W线宽0.13 nm的激光输出.通过调节VBG的温度,LD波长可从779.28 nm调谐至780.13 nm,调谐范围达850 pm.  相似文献   

19.
铈激光器直接提供可调谐紫外光   总被引:1,自引:0,他引:1  
在大气传感和燃烧诊断等许多光谱应用中,均需要可调谐紫外激光源。获得在此波段输出的典型方法是对可调谐可见光和红外光进行相对复杂的非线性频率转换,更为简洁和有效的方法是用最新发展的掺铈氟化物固态激光器,在280~330nm区域直接产生可调谐输出。  相似文献   

20.
激光吸收光谱流场诊断技术应用研究与进展   总被引:4,自引:0,他引:4  
可调谐激光吸收光谱(TDLAS)技术作为一种先进的光谱检测手段已经被广泛应用于燃烧流场和风洞环境的过程诊断中,它可以实现流场温度、组分浓度、气流速度等多参数的在线精确测量。介绍了TDLAS技术的基本原理及其在流场参数测量领域的发展历程,总结了近几年来在超燃冲压发动机、航空涡轮发动机以及超声速风洞等流场参数测量方面所开展的TDLAS应用实例,着重介绍了在实验室和外场环境中就流速的高精度测量、燃烧场温度和组分的连续监测、场分布的准确反演所做的研究工作。同时概述了激光吸收光谱流场诊断技术的发展水平、目前已经取得的最新研究进展以及还存在的相关问题,最后展望了TDLAS技术在流场诊断领域的应用前景和未来的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号