首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究碱金属蒸气电离对半导体抽运碱金属激光器(DPAL)定标放大的影响, 采用适宜于短脉冲激光抽运源的光电流法来测量碱金属蒸气电离度, 并开展了铯蒸气电离度同激光抽运功率密度、碱金属池温度、抽运激光器重复频率之间关系的实验研究。结果表明, 在不考虑热效应的情况下, 即使抽运激光的功率密度高达3×108W/cm2、碱金属池温度150℃、氦气缓冲气压力9.33×104Pa条件下, 铯蒸气的电离度也仅仅达到1%左右; 在碱金属池温度从122℃升高至163℃的过程中, 相对于铯蒸气粒子数密度的显著增大, 铯蒸气电离度的变化非常小。该研究结果对于铯DPAL通过增加抽运激光功率密度和提高碱金属池温度进行定标放大具有非常积极的意义。  相似文献   

2.
半导体抽运碱金属蒸气激光器(DPAL)具有量子效率高、气体介质循环流动散热、全电操作、结构紧凑等特点,是极具发展潜力的新型高能激光光源。其中,增益介质内碱金属原子浓度测量是对DPAL进行诊断测试的重要研究内容。通过利用单频分布布拉格反射(DBR)激光器波长扫描测量铷蒸气的吸收光谱,采用对激光器进行温度调节与电流扫描相结合的方法进行扫描光谱范围拼接,利用无跳模调谐范围为23GHz的激光器实现了100GHz的无跳模光谱扫描范围,在此基础上测量了充入大气压量级缓冲气体铷蒸气的完整吸收光谱。通过与理论计算结果进行参数拟合得到了铷原子浓度。该方法可应用于高功率抽运条件下流动介质DPAL中碱金属原子浓度的测量。  相似文献   

3.
短蒸气室自加热碱金属激光器的原理是利用未被增益介质吸收的抽运光加热碱金属蒸气室。基于三能级速率方程,建立了半导体激光双端抽运碱金属激光器的理论模型,研究了增益介质长度、蒸气室温度和抽运源线宽等参数对短蒸气室自加热碱金属激光器输出激光的影响。研究结果表明,在普通外腔半导体激光器抽运下,增益介质长度为2mm时可以实现瓦级激光输出,选择较高的抽运光功率可提高自加热碱金属激光器的输出功率。该研究结果将为自加热碱金属激光器的实验提供理论基础,并可进一步拓展小功率碱金属激光器的应用领域。  相似文献   

4.
半导体激光器抽运碱金属激光器(DPAL)是近年来发展迅速的新型激光光源。DPAL的主振荡功率放大(MOPA)系统是实现DPAL高功率化的最理想工程手段之一。相对于传统激光器,DPAL的吸收和发射线宽非常窄,因此种子光的线宽是影响DPAL-MOPA输出特性的重要参数之一。建立端面抽运DPAL-MOPA系统的微观动力学理论模型,在计算步骤中考虑了种子光线宽与发射截面的波谱分布,详细计算和分析了种子光线宽对DPAL-MOPA系统的输出功率、输出线宽、提取效率、增益系数和抽运吸收等特性的影响,有助于将来定标放大高功率DPAL系统的构建。  相似文献   

5.
根据激光三能级速率方程理论,考虑抽运光聚焦的空间分布,建立三维DPAL速率方程组的理论模型,结合激光系统运行的边界条件,通过数值方法,对模型进行求解,对端面抽运铷蒸气激光器的输出特性进行了详细分析,包括抽运光聚焦光斑半径、聚焦位置、蒸气池长度等参量对模式匹配效率、阈值抽运功率和斜率效率的影响。在模式匹配最佳时,计算了对介质长度对激光输出和阈值的影响。根据抽运光功率,以获得最大激光输出功率为目标,给出了激光器系统的优化参数,包括介质长度、抽运光聚焦在介质中的聚焦位置、输出耦合反射率。  相似文献   

6.
半导体激光抽运碱金属激光器(DPAL)具有很高的斯托克斯效率、高光束质量、近红外光谱等优异的特性, 得到了广泛的关注和较快的发展。作为典型的三能级激光器, 碱金属激光器连续输出的近红外波长分别为895nm(铯), 795nm(铷), 770nm(钾)。介绍了半导体激光抽运碱金属激光器的物理机理和重要研究进展, 以及作者团队在碱金属激光器方向做的理论和实验研究情况, 讨论了该领域存在的问题和难点, 并对碱金属激光器的未来发展进行了分析和展望。  相似文献   

7.
由于半导体激光泵浦碱金属蒸气激光器(DPAL)的饱和增益较大,因此采用主振荡功率放大器(MOPA)结构对其进行定标放大是实现其高功率化的理想选择。基于端面泵浦DPAL-MOPA系统的微观动力学理论模型设计了铷蒸气DPAL的三级放大系统。另外,分别对长度为3、5、7 cm的三种密闭蒸气池在不同温度条件下的增益特性做了详细的计算与分析,最终确定预放大级的密闭蒸气池长度为3 cm,一级主放大级的为5 cm,二级主放大级的为7 cm。基于这种三级MOPA结构可把功率为50 mW的铷蒸气DPAL种子光放大至1 000 W量级。同时,也评估了采用此设计方案时,整个MOPA系统所产生的自发辐射功率和热功率。该研究对将来实现高功率DPAL提供了设计思路和理论依据。  相似文献   

8.
半导体抽运铷蒸气输出2.8W线偏振铷激光   总被引:5,自引:0,他引:5  
半导体抽运碱金属蒸气激光器(DPAL)是一种具有广阔应用前景的激光器,近年来发展迅速。使用碱金属铷所需要的中心波长为780nm的半导体激光器线阵作抽运源,采用平面衍射光栅搭建Littrow外腔将线宽压窄至0.13nm,并使用斩波器将半导体激光变为脉冲输出形式。采用透镜组合对窄线宽半导体激光进行光束扭转整形,整形后光斑近似为方形。半导体激光经线宽压窄和光束整形后,被聚焦进铷蒸气泡,泡内充入79kPa甲烷作为缓冲气体。控制铷蒸气泡温度为145℃,注入谐振腔的抽运光峰值功率为最高13W时,获得了峰值功率2.8W的线偏振铷激光输出,光-光转换效率达21%。  相似文献   

9.
半导体抽运碱金属蒸气激光器(DPAL)在高能激光领域获得了快速发展,但碱金属原子吸收谱宽很窄,即使充入1.01×105 Pa的缓冲气体如氦气或乙烷,其碰撞加宽也只有0.02-0.04 nm,而市售大功率半导体激光器输出谱宽为2-4 nm,难以实现有效抽运.采用Littman外腔结构压窄20 W单宽面源大功率半导体激光器...  相似文献   

10.
半导体抽运碱金属蒸气激光器(DPAL)需大功率窄线宽泵浦源,但市售半导体激光器输出线宽远远大于碱金属原子吸收谱宽,难以实现有效泵浦,因此需采用Littrow 外腔法压窄半导体激光器输出谱宽。Littrow 外腔系统中元件参数的选择直接影响大功率半导体激光器输出谱宽。为此文中沿入射光线方向构建外腔压窄模型,利用球面镜替代柱面镜,分析了微柱透镜阵列、光学系统和光栅元件对外腔输出谱宽的影响,模拟结果为微柱透镜阵列焦距越小、光栅刻线越密、球面镜焦距越大,外腔输出谱宽越窄,实验结果符合理论模型。  相似文献   

11.
高功率双包层光纤激光器的受激拉曼散射   总被引:3,自引:2,他引:3  
受激拉曼散射(SRS)会限制光纤激光器功率的提高。利用光纤激光器的功率传输方程,理论分析了高功率掺Yb3 双包层光纤激光器中的受激拉曼散射效应,得到了纤芯直径、光纤长度、掺杂浓度以及抽运方式对光纤激光器特性的影响。通过分析,得到了增大纤芯直径、减小光纤长度、降低掺杂浓度以及合理的抽运方式可以有效地减小拉曼散射的影响。利用已有的实验结果对理论模型进行了对比,证明了理论模型的正确性。所得的结果对设计实现高功率双包层光纤激光器提供了理论依据。  相似文献   

12.
高功率碱金属蒸汽激光器在地球同步卫星发射中的应用   总被引:1,自引:0,他引:1  
半导体激光抽运碱金属蒸汽激光器(DPAL),可以提供高功率、高效率、近衍射极限的近红外连续激光输出,具有较其它传统高功率激光器更好的综合性能.其发射波长近大气传输窗口,且与半导体光电转换器件的高效吸收波长吻合,因此以DPAL为光源的太空激光传能系统在航空航天领域中具有很好的应用前景.首先概述DPAL的基本原理和结构,并对其作为能源用于同步地球卫星发射任务的方式和优势做了简要讨论.  相似文献   

13.
基于端面泵浦碱金属蒸汽激光器的速率方程模型,研究了碱金属蒸汽激光器在不同缓冲气体环境中的工作特性。通过优化输出镜反射率、气体压强等参量,获得了激光器在不同缓冲气体中的输出功率随温度的变化曲线。结果表明:有烃DPAL中,最佳输出功率和运行温度随能级混合速率的增大而分别增大和减小,而且激光器在不同烃类气体下的最佳工作状态可用准二能级工作曲线描述;无烃DPAL中,氦气同位素3He可以大幅减小激光器的氦气压强,而且能够提高Rb-DPAL的输出功率,但是K-DPAL在3He中的输出功率略低。模拟结果与已报道的实验现象有较好的符合,可为实验研究提供理论指导。  相似文献   

14.
高功率半导体激光抽运碱金属蒸汽激光器   总被引:1,自引:2,他引:1  
随着半导体抽运固体激光器向更高的输出功率发展,固体激光工作物质的热效应问题成了该类器件发展的瓶颈,人们开始尝试用高功率半导体激光抽运气体工作物质来代替固体工作物质以实现良好的热管理。半导体抽运碱金属蒸汽激光器(DPAL)结合半导体激光高功率、高效率抽运和气体激光介质良好的热管理和光学特性,以及碱金属原子D线激光跃迁的高量子效率(99%)等优越性,有可能实现好的光束质量(近衍射极限)、高效率(斜率效率大于80%)、高平均功率的近红外激光,在定向能量传输、国防军事、激光钻油气井和激光工业加工等领域具有极好的应用前景。综述了DPAL激光器的工作原理、关键技术、最新研究进展和它的应用前景。  相似文献   

15.
为了获得高效半导体抽运碱金属蒸气激光器,采用布儒斯特角结构的增益池,有效地提高了激光的单程透射率,p偏振的激光单程透射率达到97%。采用长度为1 cm的增益池,其内填充碱金属铷蒸气作为增益介质和压强为79.99 k Pa的甲烷作为缓冲气体。采用中心波长为780 nm,线宽为0.1 nm,功率为48 W连续输出的半导体激光器作为抽运源。为了降低增益池内的热效应,采用斩波器将抽运光转化成脉冲形式输出,脉冲宽度为1.85 ms,重复频率为15 Hz,占空比2.77%。采用12 cm的平凹谐振腔,利用输出耦合率分别为41%、58%、76%的输出镜进行了优化实验。在增益池温度为160℃时,采用输出耦合率为76%的输出镜,获得了峰值功率最高为16.8 W的中心波长为795 nm的铷激光输出,光-光转换效率为35%,斜率效率为44.2%。  相似文献   

16.
半导体激光器端面抽运Nd:Ti:LiNbO3波导激光器理论与分析   总被引:1,自引:0,他引:1  
用光束传播法(Beam Propagating Method)计算并分析了用半导体激光器端面抽运的1.084 μm NdvTivLiNbO3 波导激光器输出功率的理论模型。用Nd3+ 的原子复极化率来描述受激辐射光的增益与抽运光的吸收,且考虑到前进与后退光波的相互作用,给出激活媒质的粒子数空间反转分布,并修改了抽运吸收和受激辐射截面的取值,使之适用于半导体激光器从波导激光器端面抽运,计算值与实验值符合得很好。  相似文献   

17.
采用中心波长为852.3 nm、线宽为0.17 nm的光纤耦合半导体激光器作为抽运源,室温下充入60 k Pa氦气和20 k Pa乙烷、5 mm长的铯蒸气池作为激光增益介质开展了端面抽运铯蒸气激光实验研究。蒸气池工作温度为107.6℃时,改变输出镜反射率优化铯激光输出性能,获得最佳输出镜反射率为48.79%。连续抽运模式下,注入抽运功率为4.76 W时获得1.16 W的894.57 nm连续激光输出,斜效率为28.8%,光光转换效率达24.4%;脉冲抽运模式下,注入抽运功率为14.1 W时获得了2.5 W稳定铯激光输出。  相似文献   

18.
由稳态条件下描述光纤中受激拉曼散射(SRS)效应的光功率耦合方程出发,采用解析方法对多阶级联拉曼光纤激光器(CRFLs)进行了理论分析。根据拉曼光纤激光器级联阶数的奇偶性分别推导出了多阶级联拉曼光纤激光器的输出功率、光-光转换效率最大时的拉曼光纤长度和输出耦合器反射率。通过忽略反射回谐振腔输入端的剩余抽运光功率,计算了5阶级联拉曼光纤激光器的输出特性和光-光转换效率随光纤长度和输出耦合器反射率的变化。利用已有的5阶级联掺锗拉曼光纤激光器输出特性实验数据与理论分析结果进行了对比。  相似文献   

19.
采用倍频Nd:YAG绿光激光器与铜蒸气激光器混合抽运双级染料激光放大器的实验方法,通过抽运激光器精确的脉冲同步控制和匹配技术,获得了9.0W的染料激光输出,第二级染料激光放大器对抽运激光的提取效率达到了26.6%,系统总提取效率达到了13.6%.实验研究了染料激光输出功率和抽运激光提取效率随染料激光波长的变化关系.  相似文献   

20.
碱金属蒸气激光器具有高量子效率且易于流动散热,显示出良好的发展潜力。概述了光抽运碱金属蒸气激光器的基本原理和国内外的研究进展。对于其在发展中遇到的问题进行了简要分析,并总结了目前所采用的相应解决方案,指出了几种方案所存在的优、缺点。对碱金属蒸气激光器未来可能的研究方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号