首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
曹镱  徐佳  刘江  师红星  王璞 《应用激光》2013,33(1):52-57
工作在2μm波段的脉冲掺铥光纤激光器,可望在遥感探测、相干雷达、空间光通信、激光医疗和特种材料加工等领域获得重要应用。目前,利用波长在1.55μm附近的脉冲掺铒光纤激光器作泵浦源的增益开关掺铥光纤激光器是实现全光纤结构纳秒脉冲掺铥光纤激光器的理想方式之一。采用实验研发的纳秒脉冲掺铒激光器作种子源,研制了全光纤MOPA(masteroscillator power amplifier)结构的纳秒脉冲掺铒光纤激光器,输出波长1 547 nm,脉冲频率100 kHz,脉冲宽度50 ns,平均功率1 W,单脉冲能量10μJ。使用该脉冲掺铒光纤激光器抽运掺铥光纤,实现了波长1 963 nm的增益开关脉冲激光输出。该掺铥光纤激光器为全光纤结构,重复频率100 kHz,最小脉宽47 ns,最大单脉冲能量100 nJ。激光输出稳定可靠,更高的单脉冲能量,平均功率和峰值功率可由进一步级联光纤放大器实现。  相似文献   

2.
掺镱全光纤纳秒脉冲激光器发展迅猛,已经为诸多领域开辟了新的道路,特别是高平均功率、大脉冲能量的纳秒脉冲光纤激光器在激光清洗等领域得到了广泛应用。多路光纤激光合束是实现高平均功率、大脉冲能量激光输出的主要手段,其结构复杂程度取决于单模块激光器的输出特性,提升单模块纳秒脉冲全光纤激光器输出特性对于激光清洗等领域具有重要意义。文中总结了单模块掺镱全光纤纳秒脉冲激光器的研究进展,分析了当前限制其功率和能量进一步提升的主要因素。首先,从主动调Q、被动调Q以及增益开关技术三个层面回顾了纳秒脉冲掺镱全光纤振荡器的研究进展;其次,从大脉冲能量、高平均功率、两者协同发展三个指标层面总结了纳秒脉冲掺镱全光纤放大器的研究现状;最后,从限制高指标掺镱全光纤激光器输出特性的因素出发,展望了其在未来功率和能量提升上的发展趋势。  相似文献   

3.
报道了一种新型纳秒脉冲532 nm绿光激光器,其基频光为耗散孤子共振(DSR)方波纳秒脉冲、由掺镱光纤激光器得到,该激光器采用了全光纤主振荡功率放大(MOPA)结构设计。利用非线性偏振旋转(NPR)锁模技术,掺镱光纤激光种子源产生了稳定的DSR方波纳秒脉冲激光输出,输出激光的脉冲宽度随抽运功率的改变在3~40 ns之间可调。利用该DSR方波纳秒脉冲激光作为种子源,经过一级非保偏结构掺镱光纤纤芯放大和两级全保偏结构掺镱光纤包层放大之后,得到了平均功率为6.95 W,峰值功率为4.4 k W的脉冲激光输出。利用长度为20 mm的非线性晶体LBO作为频率转换器,得到了平均功率为2.1 W的绿光激光输出,相应的光光转换效率为30.2%。  相似文献   

4.
采用铒镱共掺光纤,实现了一种双波长1.0μm调Q和1.5μm增益开关脉冲光纤激光器。实验装置是一个双环腔结构,两环的公共端共用一段铒镱共掺光纤。1.0μm调Q脉冲通过未抽运铒镱共掺光纤的可饱和吸收效应产生。而铒镱共掺光纤对1.0μm调Q脉冲的再吸收会周期性调制铒离子的反转粒子数,从而产生重复频率相等的1.5μm增益开关脉冲。随着抽运功率的增加,这两种脉冲的重复频率从5.4kHz增加到11.7kHz。1.5μm脉冲相对1.0μm脉冲有一定的延迟,并且延迟时间随着抽运功率的增大而不断减小。在最大抽运功率处,1.0μm脉冲宽度、单脉冲能量和最大平均输出功率分别是5.3μs、402.6nJ和4.7mW,而对于1.5μm脉冲,分别是4.6μs、374.4nJ和4.4mW。  相似文献   

5.
报道了一种基于光纤可饱和吸收体的纳秒脉冲掺铥全光纤双腔激光器。该激光器采用线型双腔结构,采用1550nm连续光纤激光器作为抽运源,以光纤布拉格光栅作为波长选择器件,利用掺铥光纤的可饱和吸收特性,同时结合双谐振腔间的相互作用,获得稳定的纳秒脉冲输出。分别采用单包层铥钬共掺光纤和双包层掺铥光纤作为增益介质,研究二者对激光输出性能的影响,并进行优化对比,最终实现平均功率为256.3mW,最窄脉宽为87ns的1993nm激光输出,脉冲重复频率在20.0~33.3kHz范围内可调。  相似文献   

6.
自锁模掺镱光纤激光器研究   总被引:2,自引:2,他引:2  
用反射率为 1 5dB掺镱光纤光栅作为反射器的掺镱光纤激光器 ,产生了稳定的纳秒级脉冲序列 ,脉冲宽度小于 5ns。激光器的阈值功率为 1 8mW ,在锁模工作区域内最大输出平均功率为 3mW ,脉冲重复频率为 2 5MHz,能量转换效率为 5 %。研究了产生自锁模的原因和特性  相似文献   

7.
非线性光纤环形镜掺铒光纤激光器的实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究掺铒光纤激光器超短脉冲的产生,采用增益平坦型掺铒光纤放大器、两个偏振控制器以及3个耦合器,利用非线性光纤环形镜加成脉冲锁模技术,通过改变偏振控制器的方向,获得最大输出功率为0.6mW的脉冲输出,对应的光谱宽度9nm、中心波长1561nm、脉冲宽度434ps、脉冲的重复频率为1.1MHz.该脉冲经过掺铒光纤放大器放大后,最大输出功率为10.8mW.放大后锁模脉冲的中心波长保持不变、光谱带宽稍有变窄、输出功率明显增大、脉冲宽度展宽为495ps.实验结果表明,采用商用的掺铒光纤放大器可实现结构简单、调节方便的掺铒光纤激光器超短脉冲输出,且掺铒光纤激光器可以实现自启动,并长时间稳定锁模工作.  相似文献   

8.
种兰祥  李建郎 《中国激光》2007,34(3):345-349
抽运旁通腔型的掺镱光纤(YDF)激光器内剩余的抽运光功率随着入射抽运功率的变化呈现出光学双稳特性,这导致了用它来抽运另一个分叉腔的铒镱共掺光纤(EYDF)增益介质可获得第二个信号波长激发的可能性。根据这一原理,从实验上获得了1040 nm和1537 nm两个激发线的可切换振荡,这表明基于掺镱光纤激光器光学双稳态的复合腔结构(掺镱光纤激光器的抽运旁通腔和铒镱共掺光纤分叉腔)是实现切换式双波长光纤激光器光源的一个简单有效的方法。  相似文献   

9.
980nm波段的掺镱光纤激光器因有望获得高亮度激光输出,代替980nm波段的半导体激光器成为掺铒/镱光纤激光器高亮度的抽运源而备受关注。从980nm波段光纤激光器广泛使用的4类增益光纤——单模单包层掺镱光纤、常规双包层掺镱光纤、JAC(Jacketed air-clad)掺镱光纤以及超大纤芯掺镱光子晶体光纤出发,对国际上各研究机构所做的工作进行了综述,介绍了其实验进展和存在的问题。最后就980nm波段光纤激光器的未来发展方向进行了探讨。  相似文献   

10.
1.0 m波段的超短脉冲激光器在激光加工、光学精密测量和生物医学等领域具有重要应用价值,但由于掺镱光纤激光器工作在全正色散区域,激光器直接输出的脉冲通常宽度较大。文中利用改变微纳光纤尺寸可以使其在1.0 m波段提供反常色散的特点,将微纳光纤作为色散补偿元件在掺镱光纤激光器腔外对脉冲进行压缩来获得超短脉冲。实验中,自主拉制的微纳光纤锥腰直径为3 m,锥腰长度为5 cm。掺镱光纤激光器直接输出脉冲宽度为37.6 ps,经微纳光纤压缩后脉冲宽度为8.5 ps。该结果提供了一种更简便低廉的压缩脉冲方法。  相似文献   

11.
为了实现稳定的窄线宽高功率输出,设计了一种基于级联结构的铒镱共掺窄线宽光纤激光器,对其线宽和稳定性进行了详细讨论.激光器为两级放大结构,预放采用单包层掺铒光纤为增益介质,可起到降低最终输出自发辐射噪声的作用.主放采用铒镱共掺的双包层大模场光纤,可提高受激布里渊散射散射阈值.实验结果表明,激光经过不同放大后的稳定性几乎没...  相似文献   

12.
基于增益均衡技术,提出了一种结构简单的双波长光纤激光器。激光器采用线形腔结构,以一对双波长掺铒光纤重叠光栅为波长选择器件,掺铒光纤为增益介质。实验结果表明,通过精细调节输出端双波长掺铒光纤重叠光栅两端的机械应力,能够调整出射端腔镜在λ1和λ2处的反射率(或透射率),即调整激光器的损耗,使谐振腔内双波长处各自的损耗和增益相匹配,有效抑制腔内模式竞争,实现了波长间隔为0.932 nm的稳定双波长激光同时激射。该激光器阈值功率为4 m W,输出激光的3 d B带宽约为0.02 nm,30 d B带宽小于0.2 nm,边模抑制比可达51.96 d B。激光器具有结构简单、室温下输出稳定、线宽窄、阈值低等优点。  相似文献   

13.
双波长单纵模掺铒光纤环形激光器设计及实验研究   总被引:2,自引:0,他引:2  
为了实现1550nm正交线偏振双频激光输出,设计了一种复合环形腔双波长单纵模掺铒光纤(EDF)激光器,以保偏光纤Bragg光栅作为波长选择元件,并采用未抽运掺铒光纤饱和吸收体作为激光单纵模选择元件,从而实现正交线偏振1550nm双波长单纵模激光稳定振荡输出。简要介绍了复合环形腔选模及未抽运掺铒光纤饱和吸收体选模的基本原理,理论分析了未抽运掺铒光纤长度对单纵模选择的影响,实验研究了不同选模情况下双波长激光的振荡特性。实验结果表明:腔内含有保偏光纤Bragg光栅和未抽运掺铒光纤饱和吸收体的复合环形腔。掺铒光纤激光器能够稳定输出1550nm正交线偏振双波长单纵模激光,其波长间隔约为0.344nm。这种双波长单纵模光纤激光器可广泛应用于激光传感与测量以及密集波分复用(DWDM)光纤通信等领域。  相似文献   

14.
掺稀土光纤作为激光增益介质在光纤通信、光纤激光器和传感器等领域有着广泛的应用,国内掺铒光纤、掺镱光纤的市场曾长期被Corning、Lucent等国外光纤制造厂商所垄断,近年来我国掺铒光纤、掺镱光纤的研究取得了很大进展,已部分替代国外进口.文章主要介绍国内掺铒光纤、掺镱光纤的研究现状和发展趋势.  相似文献   

15.
为了获得尽可能高的输出功率以满足应用需求,分别以实验和数值分析的方法对铒镱共掺双包层光纤激光器的性能进行了进一步研究.实验上,采用加拿大国家光学研究所生产的EY805型铒镱共掺双包层多模光纤作为增益介质,描述了输出功率随入纤抽运功率以及光纤长度的变化,在光纤长度为1.8m的情况下,获得了3.5W的最大输出功率,光-光转换效率达31.8%.基于速率和传输方程,对该铒镱共掺双包层光纤激光器进行了数值模拟,在相同光纤长度下,计算的最大输出功率约.W,光-光转换效率0%,比实验结果要高.讨论了进一步对该光纤激光器性能进行优化的措施.该结果对于促进铒镱共掺双包层光纤激光器的实用化及其性能改进具有重要意义.  相似文献   

16.
人眼安全的1550 nm全光纤单频脉冲激光器具有广泛且诱人的应用前景。本文所研制的激光器采用全光纤主振荡功率放大(MOPA)结构和腔外声光调制的方法,一级预放大级采用1.5 m单模保偏掺铒光纤,输出功率21.45 mW;二级预放大级采用1.5 m双包层保偏铒镱共掺光纤,输出功率253.6 mW;功率放大级采用1 m双包层保偏大芯径铒镱共掺光纤,泵浦功率15.9 W时,最终实现了输出功率2.6 W、脉宽260 ns、重复频率10 kHz的单频脉冲激光输出。通过对各级增益光纤和无源光纤的长度优化,成功抑制了放大自发辐射(ASE)和受激布里渊散射(SBS),消除了放大过程中噪声的影响,得到了峰值功率1 KW的稳定单频脉冲特性。  相似文献   

17.
设计了一种8字腔结构的激光器,用980 nm的泵浦源泵浦保偏掺铒光纤,得到了重复频率约是10 MHz双脉冲的输出,为了检验双脉冲的组成,在激光器的输出放置一个掺铒光纤放大器、偏振控制器和偏振分束,在不同的偏振态下获得了单脉冲的输出,证明双脉冲是偏振态不同的两个单脉冲组成的。  相似文献   

18.
提出了基于掺铒光纤环形滤波器和多模光纤光栅的双波长激光器。在单波长光纤激光器的基础上,增加了多模光纤布拉格光栅(MM-FBG)和高精细度的光纤滤波器。其中多模光纤布拉格光栅作为激光器的波长选择元件,可产生两个波长的激光输出。高精细度的光纤滤波器由两个光耦合器和一段弱泵浦的掺铒光纤构成,掺铒光纤产生的增益和光纤时延使滤波器具有高精细度的梳状谱响应,从而抑制了激光器产生的不需要模式,保证了输出的激光具有窄线宽特性。以980 nm的激光二极管(LD)作为泵源,得到了线宽为0.07 nm或0.08 nm的双波长输出,表明滤波器具有良好的滤波效果。  相似文献   

19.
祖嘉琦  武帅  张海涛  耿东晛  卢姁 《红外与激光工程》2020,49(6):20190382-1-20190382-6
报道了一种基于光纤饱和吸收体的掺镱全光纤调Q激光器,为了获得较高峰值功率较窄脉宽的激光脉冲输出,利用掺镱光纤的可饱和吸收效应,以20/130 μm规格的大模场双包层掺镱光纤作为增益光纤,以10/130 μm规格的单模双包层掺镱光纤作为可饱和吸收体来实现被动调Q。该激光器采用全光纤化的结构,结构紧凑,以较低的成本获得了较为高效的脉冲输出。最终获得了平均功率最高为3 W,直线效率约为30%,重复频率为10~100 kHz可调,脉宽最窄为344 ns,光谱宽度为0.05 nm、中心波长为1 064 nm的激光输出。  相似文献   

20.
采用的泵浦源是Coherent公司899-29型钛宝石可调谐激光器,在980nm波长处额定功率600mW,激光线宽小于6GHz;用于混合泵浦的1480nm半导体激光器,最大输出功率90mW。信号源为分布反馈半导体激光器,单纵模工作波长1536nm,额定功率3.5mW。所用的国产的掺铒光纤芯径3.27μm、数值孔径0.223、截止波长958.6nm;英制掺铒光纤芯径3.17μm,数值孔径0.22、截止波长910nm、掺铒浓度200ppm;980nm和1480nm混合泵浦用的掺铒光纤芯径4.9μm、数值孔径0.22、截止孔径0.22、截止波长1.4μm、掺铒浓度230ppm;英制铒/镱双掺杂的光纤、掺镱浓度13000ppm。信号光和泵浦光通过光纤波分复用器耦合进掺铒光纤,波分复用器对信号光的耦合率大于99%、对泵浦光直通率大于90%,以硅片上镀介质膜和小棱镜作滤波器和隔离器,用GDS50-15双光栅单色仪,Coherent 212型功率计和AV2491型光纤功率计作探测器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号