首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.  相似文献   

2.
In this work, the possibility to increase the surface conductivity of ceramic insulators through their treatment with accelerated metal ion beams produced by a MevvaV.Ru vacuum arc source is demonstrated. The increase in surface conductivity is made possible due to experimental conditions in which an insulated collector is charged by beam ions to a potential many times lower than the accelerating voltage, and hence, than the average beam ion energy. The observed effect of charge neutralization of the accelerated ion beam is presumably associated with electrons knocked out of the electrodes of the accelerating system of the source and of the walls of the vacuum chamber by the accelerated ions.  相似文献   

3.
The ion source is one of the key devices for the high-intensity cyclotron, which exerts influence on the beam intensity and applications of the machine. The H(-) multi-cusp ion source developed at China Institute of Atomic Energy has been used to perform experimental study on beam intensity and emittance versus the bias voltage, arc power, lens voltage, and pressure of the ion source. Up to now, 18 mA H(-) ion beam with emittance of 0.93 πmm mrad (four times RMS normalized emittance) was obtained from this ion source through the in-depth study and optimization on some essential factors affecting the beam intensity and quality. The paper will present the experimental study on the ion source as well as the beam test results.  相似文献   

4.
The main limitation to further improve the performance of ECR ion sources is set by the magnet technology related to the multipole magnet field used for the closed minimum-B structure. The JYFL ion source group has sought different approaches to improve the strength of the minimum-B structure required for the production of highly charged ion beams. It was found out that such a configuration can be realized with arc shaped coils. The first prototype, electron cyclotron resonance ion source with arc-shaped coils (ARC-ECRIS), was constructed and tested at JYFL in 2006. It was confirmed that such an ion source can be used for the production of highly charged ion beams. Regardless of several cost-driven compromises such as extraction mirror ratio of 1.05-1.2, microwave frequency of 6.4 GHz, and beam line with limited capacity, Ar(4+) beam intensity of up to 2 μA was measured. Subsequent design study has shown that the ARC-ECRIS operating at the microwave frequency above 40 GHz could be constructed. This specific design would be based on NbTi-wires and it fulfills the experimental magnetic field scaling laws. In this article, the ARC-ECRIS concept and its potential applications will be described.  相似文献   

5.
In order to generate a better ion beam, a triple-cathode vacuum arc plasma source has been developed. Three plasma generators in the vacuum arc plasma source are equally located on a circle. Each generator initiated by means of a high-voltage breakdown between the cathode and the anode could be operated separately or simultaneously. The arc plasma expands from the cathode spot region in vacuum. In order to study the behaviors of expanding plasma plume generated in the vacuum arc plasma source, a Langmuir probe array is employed to measure the saturated ion current of the vacuum arc plasma source. The time-dependence profiles of the saturated current density of the triple vacuum arc plasma source operated separately and simultaneously are given. Furthermore, the plasma characteristic of this vacuum arc plasma source is also presented in the paper.  相似文献   

6.
苏海波  谭国斌  黄正旭  洪义  车欣欣  王攀攀  高伟  周振 《质谱学报》2020,41(2):153-159,I0006
本研究开发了一台应用于高能量离子束诊断的直线式飞行时间质谱仪,实现了其与高能真空弧放电离子源的联用。该仪器加速电压30 kV,飞行腔有效飞行距离1.5 m,通过短脉冲离子门精确截取,ICCD高速相机优化聚焦,仪器分辨率优于90 FWHM,对放电过程中产生的等离子体可实现不同时间的离子成分分析。将该方法用于真空弧放电离子源放电过程中离子成分的检测,放电2 μs时,电离成分以气态离子C+、O+、C2+、O2+为主;放电6 μs后,除气体成分外,还可以检测到Fe+、Cu+及其同位素金属离子峰。该仪器能够给出离子源放电产生离子的种类、价态以及相对含量等信息,可实现整个放电过程产生离子成分信息的准确诊断。  相似文献   

7.
《Wear》2002,252(7-8):540-545
AISI D3 tool steel was ion implanted with zirconium and the improvement in surface tribological properties investigated. The Zr ion implantation was done using a metal vapor vacuum arc (Mevva) broad-beam ion source, with a mean ion energy of 130 keV and at doses of 3.6×1016, 5×1016 and 1×1017 ions/cm2. Wear, friction and hardness of the implanted samples were measured and compared to the performance of unimplanted steel. The wear resistance was increased by about a factor of two, the friction remained about the same or was possibly increased by a small amount and the near-surface hardness was improved by a factor of five or more by the ion implantation. We also investigated the effect on the Zr implantation profile of the multi-component energy distribution of the ion beam.  相似文献   

8.
An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π?mm?mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.  相似文献   

9.
A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2).  相似文献   

10.
A compact microwave driven plasma ion source for focused ion beam applications has been developed. Several gas species have been experimented including argon, krypton, and hydrogen. The plasma, confined by a minimum B multicusp magnetic field, has good radial and axial uniformity. The octupole multicusp configuration shows a superior performance in terms of plasma density (~1.3 x 10(11) cm(-3)) and electron temperature (7-15 eV) at a power density of 5-10 Wcm(2). Ion current densities ranging from a few hundreds to over 1000 mA/cm(2) have been obtained with different plasma electrode apertures. The ion source will be combined with electrostatic Einzel lenses and should be capable of producing multielemental focused ion beams for nanostructuring and implantations. The initial simulation results for the focused beams have been presented.  相似文献   

11.
Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. The stability and delivered current density depend highly on the work function during vacuum and plasma phases of the ion source. One of the most important quantities that affect the source performance is the work function. A modified photocurrent method was developed to measure the temporal behavior of the work function during and after cesium evaporation. The investigation of cesium exposed Mo and MoLa samples under ITER negative hydrogen ion based neutral beam injection relevant surface and plasma conditions showed the influence of impurities which result in a fast degradation when the plasma exposure or the cesium flux onto the sample is stopped. A minimum work function close to that of bulk cesium was obtained under the influence of the plasma exposition, while a significantly higher work function was observed under ITER-like vacuum conditions.  相似文献   

12.
Penning ion source performance for neutron generator applications is characterized by the atomic ion fraction and beam current density, providing two paths by which source performance can be improved for increased neutron yields. We have fabricated a Penning ion source to investigate novel methods for improving source performance, including optimization of wall materials and electrode geometry, advanced magnetic confinement, and integration of field emitter arrays for electron injection. Effects of several electrode geometries on discharge characteristics and extracted ion current were studied. Additional magnetic confinement resulted in a factor of two increase in beam current density. First results indicate unchanged proton fraction and increased beam current density due to electron injection from carbon nanofiber arrays.  相似文献   

13.
This paper presents measurements of the angular distribution of the plasma components and different charge states of metal ions generated by a MEVVA-type ion source and measured by a time-of-flight mass-spectrometer. The experiments were performed for different cathode materials (Al, Cu, and Ti) and for different parameters of the vacuum arc discharge. The results are compared with prior results reported by other authors. The influence of different discharge parameters on the angular distribution in a vacuum arc source is discussed.  相似文献   

14.
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.  相似文献   

15.
One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.  相似文献   

16.
A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.  相似文献   

17.
The world of Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry has witnessed, especially in the last 30 years significant advances in many fields of science, such as electronics, magnets, new ICR cell designs, developed ICR event sequences, modern external ionization sources, and linear ion beam guides, as well as modern vacuum technology. In this review, a brief account is given focusing especially on the studies performed in Wanczek's group and ICR research laboratory at the University of Bremen. An FT-ICR mass spectrometer has been developed with a high magnetic field superconducting magnet, operating at 4.7 T. At this magnetic field, a trapping time of 13.5 h was obtained with 30% efficiency. For the tetrachloromethane molecular ion, m/z 166, a mass-resolving power mm = 1.5 × 106 was measured at a pressure of 2 × 10−8 Torr. The transition from magnet sweep to frequency sweep and the application of Fourier-transform has greatly enhanced the ICR technology. External ion sources were invented and differential pumping schemes were developed for enabling ultrahigh vacuum condition for ICR detection, while guiding ions at relatively higher pressures, during their flight to the ICR cell. With the external ion source, a time-of-flight ICR tandem instrument is built. A method to measure the ion flight time and to trap the ions in the ICR cell is described. Many ICR cell characteristics such as z-axis ion ejection and coupling of radial and axial ion motions in a superposed homogeneous magnetic and inhomogeneous trapping electric field were extensively studied. Gas-phase ion–molecule reactions of several reactive inorganic compounds with a focus on phosphorous and sulfur as well as silicon chemistry were also studied in great detail. The gas-phase ion chemistry of several trifluoromethyl-reagents such as trifluoromethyltrimethylsilane and tris(trifluoromethyl)phosphine were also investigated in ICR. Dual polarities multisegmented ICR cells were invented and deeply characterized. Sophisticated ICR pulse event programs were developed to enable long-range ion–ion interactions between simultaneously trapped positive and negative ions.  相似文献   

18.
The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (~56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.  相似文献   

19.
A finely focused ion beam system is described. Beams of Ga, In, and Au ions emitted from a liquid metal ion source are routinely focused to spot diameters of ∼0.1 to 3.0 μm at a current density of ∼0.5 A/cm2 and a beam energy of 20 keV. Focused beams with energies of 1 to 30 keV have also been produced. Three applications are discussed: (1) scanning ion microscopy, (2) mask repair, and (3) ion beam lithography. Scanning ion images illustrating topographic and chemical contrast are presented. The repair of opaque and clear defects in optical masks, and opaque defects in X-ray masks is shown.Defects are imaged with the ion beam and removed by sputter erosion. Edge reconstruction of 0.5 μm features is demonstrated. Most repairs take less than 10 s/μm2. The advantages and limitations of ion beams for lithography are discussed.  相似文献   

20.
The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号