首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The reliability test of an electron cyclotron resonance ion source developed for accelerator driven sub-critical system is carried out in China Institute of Atomic Energy. A unique technique to improve the reliability is adopted. The source is operated for more than 200 h at 75 keV, 100 mA extracted hydrogen current, while 2 beam trips are recorded in the period, and uninterrupted operation time is about 150 h. The experimental result is described.  相似文献   

2.
A fourth generation electron cyclotron resonance ion source with an operating frequency between 40 and 56 GHz has the potential to quadruple the heavy-ion beam currents and provide a cost effective upgrade path for heavy ion drivers in use or in the planning stage at radioactive beam facilities. Design studies show it is feasible to produce the required magnetic fields in the plasma chamber, 7 T axially and 4 T in the radial direction with a magnetic structure using commercially available Nb(3)Sn superconducting materials. In this paper we describe the design of such a magnet structure including a 3D analysis of the Lorentz forces generated by the magnetic fields and the necessary clamping structure to stabilize the conductor against these forces.  相似文献   

3.
Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H(-), O(-), OH(-), O(2)(-), C(-), C(60)(-) negative ions and H(2)(+), H(3)(+), OH(+), H(2)O(+), H(3)O(+), O(2)(+) positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several μA and positive molecular ion beams in the mA range were successfully obtained.  相似文献   

4.
A passive coaxial pulse shaper has been developed which produces a subnanosecond duration pulse with short rise and decay time from a long pulse with short rise time. The mechanical construction of the pulse shaper is a modified coaxial air line T-section. The pulse shaper has been incorporated in the pulsing circuit of a 3-MV Van de Graaff accelerator. The form of the resulting electron beam pulses was monitored both as the charge collected by a coaxial target and as the Cerenkov light emitted by a quartz plate. In both cases sequential sampling techniques were used. The electron beam pulses were found to have rise and decay tiems of approxiamtely 100 ps and a half-width as short as approximately 200 ps could be obtained. An advantage of this method of producing subnanosecond beam pulses is that it does not interfere with normal nanosecond pulsed operation of the Van de Graaff.  相似文献   

5.
A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.  相似文献   

6.
One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.  相似文献   

7.
A highly charged uranium (U) ion beam is produced from the RIKEN superconducting electron cyclotron resonance ion source using 18 and 28 GHz microwaves. The sputtering method is used to produce this U ion beam. The beam intensity is strongly dependent on the rod position and sputtering voltage. We observe that the emittance of U(35+) for 28 GHz microwaves is almost the same as that for 18 GHz microwaves. It seems that the beam intensity of U ions produced using 28 GHz microwaves is higher than that produced using 18 GHz microwaves at the same Radio Frequency (RF) power.  相似文献   

8.
Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fu?r Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s(-1). Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s(-1) and with diameters of between 0.05 μm and 5 μm. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.  相似文献   

9.
Fullerene plasmas generated by pulse-modulated microwaves have been investigated under typical conditions at the Bio-Nano electron cyclotron resonance ion source. The effect of the pulse modulation is distinct from that of simply structured gases, and then the density of the fullerene plasmas increased as decreasing the duty ratio. The density for a pulse width of 10 μs at the period of 100 μs is 1.34 times higher than that for CW mode. We have studied the responses of fullerene and argon plasmas to pulsed microwaves. After the turnoff of microwave power, fullerene plasmas lasted ~30 times longer than argon plasmas.  相似文献   

10.
Numerical analysis of (6)He atoms utilizing efficiency in the ion source with powerful gyrotron heating is performed in present work using zero-dimensional balanced model of ECR discharge in a magnetic trap. Two ways of creation of ion source with high gas utilization efficiency (up to 60%-90%) are suggested.  相似文献   

11.
We measured the beam intensity of highly charged heavy ions and x-ray heat load for RIKEN superconducting electron cyclotron resonance ion source with 28 GHz microwaves under the various conditions. The beam intensity of Xe(20+) became maximum at B(min) ~ 0.65 T, which was ~65% of the magnetic field strength of electron cyclotron resonance (B(ECR)) for 28 GHz microwaves. We observed that the heat load of x-ray increased with decreasing gas pressure and field gradient at resonance zone. It seems that the beam intensity of highly charged heavy ions with 28 GHz is higher than that with 18 GHz at same RF power.  相似文献   

12.
Simulations predict that the concentric rings and the triangular structures in the profiles of strongly focused ion beams that are found in different experiments should be dominated by ion species with the same or at least similar m/q-ratio. To verify these theoretical predictions we have tuned our ECR ion source to deliver a beam consisting of multiple ion species whose particular m/q-depending focusing ranges from weakly focused to overfocused. We then recorded spatially resolved charge-state distributions of the beam profile at characteristic positions in the plane perpendicular to the beam line. The results validate theoretical predictions and are summarized in this paper. To achieve the required beam profile characteristics we moved the extraction along the beam line to achieve stronger focusing than by only changing the extraction voltage. To fit the regions of interest of the beam profile into the transmission area of the sector magnet, we steered the beam by moving the extraction in the plane perpendicular to the beam axis. The results of both investigations, beam focusing and beam steering by using a 3D-movable extraction, are also reported in this paper. A brief overview of the new beam monitor extensively used during these measurements, the Faraday cup array, is also given.  相似文献   

13.
14.
The ion loss distribution in an electron cyclotron resonance ion source (ECRIS) was investigated to understand the element dependence of the charge breeding efficiency in an electron cyclotron resonance (ECR) charge breeder. The radioactive (111)In(1+) and (140)Xe(1+) ions (typical nonvolatile and volatile elements, respectively) were injected into the ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex to breed their charge states. Their respective residual activities on the sidewall of the cylindrical plasma chamber of the source were measured after charge breeding as functions of the azimuthal angle and longitudinal position and two-dimensional distributions of ions lost during charge breeding in the ECRIS were obtained. These distributions had different azimuthal symmetries. The origins of these different azimuthal symmetries are qualitatively discussed by analyzing the differences and similarities in the observed wall-loss patterns. The implications for improving the charge breeding efficiencies of nonvolatile elements in ECR charge breeders are described. The similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.  相似文献   

15.
We investigated the ion-loss distribution on the sidewall of an electron cyclotron resonance (ECR) plasma chamber using the 18-GHz ECR charge breeder at the Tokai Radioactive Ion Accelerator Complex (TRIAC). Similarities and differences between the ion-loss distributions (longitudinal and azimuthal) of different ion species (i.e., radioactive (111)In(1+) and (140)Xe(1+) ions that are typical volatile and nonvolatile elements) was qualitatively discussed to understand the element dependence of the charge breeding efficiency. Especially, the similarities represent universal ion loss characteristics in an ECR charge breeder, which are different from the loss patterns of electrons on the ECRIS wall.  相似文献   

16.
Beam capture of injected ions and charge breeding in electron cyclotron resonance (ECR) charge breeder ion source plasmas has been investigated utilizing an ECR plasma modeling code, the generalized ECR ion source model, and a Monte Carlo beam capture code. Beam capturing dynamics, charge breeding in the plasma, and the extracted charged ion states are described. Optimization of ion beam energy is performed for (1) high beam capture efficiency and (2) high charge state ion beam extractions. A sample case study for ANL-ECR has been performed. Ions entering ECR ion source plasma are slowed down mostly by the background ions. Assuming Maxwellian plasma ions, maximum beam energy loss occurs when the beam velocity is around the background thermal velocity in magnitude. It is also found that beam capture location affects charge state distribution. For instance, with a majority of beam ions captured near the middle of the device higher currents for higher charge states are obtained. The beam ions captured near the entry have a higher probability of backstreaming after they are captured. For this reason, the optimum beam energy of the injected Ar(+) beam ions for charge breeding is generally higher than the optimum input beam energy for maximum beam energy loss.  相似文献   

17.
The Californium Rare Ion Breeder Upgrade (CARIBU) of the Argonne National Laboratory ATLAS facility will provide low-energy and reaccelerated neutron-rich radioactive beams for the nuclear physics program. A 70 mCi (252)Cf source produces fission fragments which are thermalized and collected by a helium gas catcher into a low-energy particle beam with a charge of 1+ or 2+. An electron cyclotron resonance (ECR) ion source functions as a charge breeder in order to raise the ion charge sufficiently for acceleration in the ATLAS linac. The final CARIBU configuration will utilize a 1 Ci (252)Cf source to produce radioactive beams with intensities up to 10(6) ions∕s for use in the ATLAS facility. The ECR charge breeder has been tested with stable beam injection and has achieved charge breeding efficiencies of 3.6% for (23)Na(8+), 15.6% for (84)Kr(17+), and 13.7% for (85)Rb(19+) with typical breeding times of 10 ms∕charge state. For the first radioactive beams, a charge breeding efficiency of 11.7% has been achieved for (143)Cs(27+) and 14.7% for (143)Ba(27+). The project has been commissioned with a radioactive beam of (143)Ba(27+) accelerated to 6.1 MeV∕u. In order to take advantage of its lower residual contamination, an EBIS charge breeder will replace the ECR charge breeder in the next two years. The advantages and disadvantages of the two techniques are compared taking into account the requirements of the next generation radioactive beam facilities.  相似文献   

18.
A compact electron cyclotron resonance proton source has been developed and installed recently at the Paul Scherrer Institute's high intensity proton accelerator. Operation at the ion source test stand and the accelerator demonstrates a high reliability and stability of the new source. When operated at a 10-12 mA net proton current the lifetime of the source exceeds 2000 h. The essential development steps towards the observed performance are described.  相似文献   

19.
The main limitation to further improve the performance of ECR ion sources is set by the magnet technology related to the multipole magnet field used for the closed minimum-B structure. The JYFL ion source group has sought different approaches to improve the strength of the minimum-B structure required for the production of highly charged ion beams. It was found out that such a configuration can be realized with arc shaped coils. The first prototype, electron cyclotron resonance ion source with arc-shaped coils (ARC-ECRIS), was constructed and tested at JYFL in 2006. It was confirmed that such an ion source can be used for the production of highly charged ion beams. Regardless of several cost-driven compromises such as extraction mirror ratio of 1.05-1.2, microwave frequency of 6.4 GHz, and beam line with limited capacity, Ar(4+) beam intensity of up to 2 μA was measured. Subsequent design study has shown that the ARC-ECRIS operating at the microwave frequency above 40 GHz could be constructed. This specific design would be based on NbTi-wires and it fulfills the experimental magnetic field scaling laws. In this article, the ARC-ECRIS concept and its potential applications will be described.  相似文献   

20.
A review of today achieved A∕Q = 3 heavy ions beams is proposed. The daily operation A∕Q = 3 ion beam intensities expected at Spiral2 are at the limit or above best record 3rd generation electron cyclotron resonance ion source (ECRIS) intensities. The necessity to build a new fully superconducting to fulfill these requirements is outlined. A discussion on the volume of the future source is proposed and the minimum value of 12 liters is derived. An analysis of the x-ray absorption superconducting ECRIS is presented based on VENUS experimental data and geometry. This study underlines the necessity to include a complete x-ray study at the time of source conception. The specifications foreseen for the new ECRIS are presented, followed with the roadmap for the design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号