首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a multi-aperture multi-grid accelerator of the ITER neutral beam injector, the beamlets are deflected due to space charge repulsion between beamlets and beam groups, and also due to magnetic field. Moreover, the beamlet deflection is influenced by electric field distortion generated by grid support structure. Such complicated beamlet deflections and the compensations have been examined utilizing a three-dimensional beam analysis. The space charge repulsion and the influence by the grid support structure were studied in a 1∕4 model of the accelerator including 320 beamlets. Beamlet deflection due to the magnetic field was studied by a single beamlet model. As the results, compensation methods of the beamlet deflection were designed, so as to utilize a metal bar (so-called field shaping plate) of 1 mm thick beneath the electron suppression grid (ESG), and an aperture offset of 1 mm in the ESG.  相似文献   

2.
A 14 MeV medical cyclotron with the external ion source has been designed and is being constructed at China Institute of Atomic Energy. The H(-) ion will be accelerated by this machine and the proton beam will be extracted by carbon strippers in dual opposite direction. The compact multi-cusp H(-) ion source has been developed for the cyclotron. The 79.5 mm long ion source is 48 mm in diameter, which is consisting of a special shape filament, ten columns of permanent magnets providing a multi-cusp field, and a three-electrode extraction system. So far, the 3 mA∕25 keV H(-) beam with an emittance of 0.3 π mm mrad has been obtained from the ion source. The paper gives the design details and the beam test results. Further experimental study is under way and an extracted beam of 5 mA is expected.  相似文献   

3.
As part of the CERN accelerator complex upgrade, a new linear accelerator for H(-) (Linac4) is under construction. The ion source design is based on the non-caesiated DESY RF-driven ion source, with the goal of producing an H(-) beam of 80 mA beam current, 45 keV beam energy, 0.4 ms pulse length, and 2 Hz repetition rate. The source has been successfully commissioned for an extraction voltage of 35 kV, corresponding to the one used at DESY. Increasing the extraction voltage to 45 kV has resulted in frequent high voltage breakdowns in the extraction region caused by evaporating material from the electron dump, triggering a new design of the extraction and electron dumping system. Results of the ion source commissioning at 35 kV are presented as well as simulations of a new pulsed extraction system for beam extraction at 45 kV.  相似文献   

4.
An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π?mm?mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.  相似文献   

5.
The first neutral beam (NB) injection system of the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak was partially completed in 2010 with only 1∕3 of its full design capability, and NB heating experiments were carried out during the 2010 KSTAR operation campaign. The ion source is composed of a JAEA bucket plasma generator and a KAERI large multi-aperture accelerator assembly, which is designed to deliver a 1.5 MW, NB power of deuterium at 95 keV. Before the beam injection experiments, discharge, and beam extraction characteristics of the ion source were investigated. The ion source has good beam optics in a broad range of beam perveance. The optimum perveance is 1.1-1.3 μP, and the minimum beam divergence angle measured by the Doppler shift spectroscopy is 0.8°. The ion species ratio is D(+):D(2)(+):D(3)(+) = 75:20:5 at beam current density of 85 mA/cm(2). The arc efficiency is more than 1.0 A∕kW. In the 2010 KSTAR campaign, a deuterium NB power of 0.7-1.5 MW was successfully injected into the KSTAR plasma with a beam energy of 70-90 keV. L-H transitions were observed within a wide range of beam powers relative to a threshold value. The edge pedestal formation in the T(i) and T(e) profiles was verified through CES and electron cyclotron emission diagnostics. In every deuterium NB injection, a burst of D-D neutrons was recorded, and increases in the ion temperature and plasma stored energy were found.  相似文献   

6.
The University of Oregon scanning ion microprobe uses a 65 cm focal length plasma lens to form 8.65 × demagnified image of an object aperture. The plasma lens focuses a positive ion beam using the self-electric field of a trapped cylindrical column of electrons of density 3−9 × 109cm−3 and length 13–18 cm. Since the focusing field is electric, the focal length depends only on ion accelerating voltage and not on ion mass or charge state. Our 5 MV Van de Graaff accelerator illuminates the object aperture with a current density of ∼ 0.5 pA/mu;m2. The lens aperture is defined by a set of slits 3.35 m beyond the object aperture slits and 2.79 m from the lens. Four pairs of deflection plates are located between the intermediate aperture and the lens. Two pairs of plates are used for each scanning direction so the beam always passes through the lens center during rastering. The 1 kV operational amplifiers that drive these plates combine three sets of signals. Computer generated voltages raster the beam. Individual dc offset voltages align the beam with the lens axis. A small 60 Hz signal cancels the effects of background 60 Hz magnetic fields along the beam line. With 1 kV rastering voltage the rastered field at the focal plane is 3 mm square for 3 MeV ions. Focal spot size is now 10 μm with a 2 mm diameter lens aperture and 5 μm with a 0.5 mm lens aperture.  相似文献   

7.
The driver linac for the facility for rare isotope beams (FRIB) will provide a wide range of primary ion beams for nuclear physics research. The linac will be capable of accelerating a uranium beam to an energy of up to 200 Mev∕u and delivering it to a fragmentation target with a maximum power of 400 kW. Stable ion beams will be produced by a high performance electron cyclotron resonance ion source operating at 28 GHz. The ion source will be located on a high voltage platform to reach an initial beam energy of 12 keV∕u. After extraction, the ion beam will be transported vertically down to the linac tunnel in a low energy beam transport (LEBT) system and injected into a radio frequency quadrupole (RFQ) operating at a frequency of 80.5 MHz. To meet the beam power requirements, simultaneous acceleration of two-charge states will be used for heavier ions (≥Xe). This paper presents the layout of the FRIB LEBT and the beam dynamics in the LEBT. In particular, simulation and design of the beam line section before charge state selection will be detailed. The need to use an achromatic design for the charge state selection system and the advantage of an ion beam collimation system to limit the emittance of the beam injected into the RFQ will be discussed in this paper.  相似文献   

8.
Proton acceleration experiments in a 19-channel accelerator with alternating phase focusing are described. An ion source with a multipolar magnetic field that allows charged particle beams with a small phase volume and a high phase current density to be obtained at the injector output has been developed and tested. A beam with a current >40 mA is accelerated in the experimental multibeam proton accelerator for an energy of 530 keV with this ion source.  相似文献   

9.
A pair of permanent magnets has formed enough intensity to realize electron cyclotron resonance condition for a 14 GHz microwave in a 2 cm diameter 9 cm long alumina discharge chamber. A three-electrode extraction system assembled in a magnetic shielding has formed a stable beam of negative hydrogen ions (H(-)) in a direction perpendicular to the magnetic field. The measured H(-) current density was about 1 mA∕cm(2) with only 50 W of discharge power, but the beam intensity had shown saturation against further increase in microwave power. The beam current decreased monotonically against increasing pressure.  相似文献   

10.
Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E < 5% at 100 MeV/nucleon and impede premature merging of different ion species at low energies on the detector plane. First results from laser driven ion acceleration experiments performed at the Trident Laser Facility demonstrate high resolution and superior species and charge state separation of this novel Thomson parabola for ion energies of more than 30 MeV/nucleon.  相似文献   

11.
The dark currents flowing in the high-voltage gaps of an electrostatic tandem accelerator with vacuum insulation and the effects associated with their occurrence are investigated. This accelerator, featuring a fast rate of charged particle acceleration and a large surface area of the accelerating electrodes, has been designed to produce a proton beam with an energy of 2 MeV and a constant current of up to 10 mA.  相似文献   

12.
Electron cyclotron resonance (ECR) plasma source at 50 keV, 30 mA proton current has been designed, fabricated, and assembled. Its plasma study has been done. Plasma chamber was excited with 350 W of microwave power at 2450 MHz, along with nitrogen and hydrogen gases. Microwave power was fed to the plasma chamber through waveguide. Plasma density and electron temperature were studied under various operating conditions, such as magnetic field, gas pressure, and transversal distance. Langmuir probe was used for plasma characterization using current-voltage variation. The nitrogen plasma density calculated was approximately 4.5 x 10(11) cm(-3), and electron temperatures of 3-10 eV (cold) and 45-85 eV (hot) were obtained. The total ion beam current of 2.5 mA was extracted, with two-electrode extraction geometry, at 15 keV beam energy. The optimization of the source is under progress to extract 30 mA proton beam current at 50 keV beam energy, using three-electrode extraction geometry. This source will be used as an injector to continuous wave radio frequency quadrupole, a part of 100 MeV proton linac. The required root-mean-square normalized beam emittance is less than 0.2pi mm mrad. This article presents the study of plasma parameters, first beam results, and status of ECR proton source.  相似文献   

13.
A new high-power (up to 100 kW) industrial electron linear accelerator ILU-14 for energies of 7.5–10.0 MeV has been developed by the Budker Institute of Nuclear Physics. The operating frequency of the accelerator is 176 MHz, and the total efficiency is 26%. Owing to the modular structure of the accelerator, the electron energy and the beam power can be varied within certain limits by changing the modular arrangement. A 5-MeV prototype of this accelerator has been produced and successfully tested. Its design parameters verified in the experiments are as follows: the beam current averaged over the RF period is 600 mA, the beam pulse power is 2.5 MW, and the electron efficiency of the accelerating structure is 68%. By applying an additional RF voltage to the electron gun cathode-grid gap, a 96% transmittance of the beam current has been attained at a minor beam energy spread. The prototype of the ILU-14 accelerator can be used as an accelerator with a beam power of 50 kW.  相似文献   

14.
A strongly focusing He(+) ion beam source equipped with concave multi-aperture electrodes was developed for production of He(-) through a charge exchange cell. The beam was extracted at a voltage less than 20 kV from 301 apertures distributed in an area of 100 mm φ, and focused at 750 mm distance. The beam current and the beam size of 2 A and 20 mm in diameter, respectively, were achieved with an arc power less than 10 kW. The optimum perveance was obtained at 0.02 A∕kV(1.5) at the beam energy less than 20 keV which is suitable for the conversion to He(-) in an alkali vapor cell.  相似文献   

15.
A new type of accelerator, namely, an electrostatic tandem accelerator with vacuum insulation, being distinguished by a high acceleration rate of charged particles and a large surface area of accelerating electrodes, was proposed, manufactured, and put into operation to obtain a proton beam with a 2-MeV energy and a direct current up to 10 mA. The influence of breakdowns on the electric strength of high-voltage components of the accelerator is studied in the work.  相似文献   

16.
二次离子质谱仪作为一种强大的表面分析工具,在表面分析领域有着非常广泛的应用。本文报道了一种用于二次离子质谱仪的一次离子光学系统,它可以对电子轰击电离源产生的一次离子进行有效的加速与聚焦,形成稳定的、能量在0~5kV范围内连续可调的离子束流。同时,该光学系统可以在两种聚焦模式下工作,产生两种不同性能的离子束流。实验结果表明,采用电子轰击电离源作为一次离子源的条件,该离子光学系统能够将离子束聚焦至直径为20μm的束斑,其一次离子束流密度最高可达到503.2mA/cm2,可以实现对一般样品(如材料或生物样品)的表面成分分析。  相似文献   

17.
A group of 9 silicon surface-barrier detectors, 4 manufactured by ORTEC and 5 fabricated by the first author and his students. has been tested for their energy resolutions with oxygen ions of 36.750 and 50 MeV energy and sulphur ions of 51.086 MeV energy from the University of Pittsburgh Van de Graaff accelerator. Six of the detectors had previously been tested with oxygen ions of 25 and 50 MeV energy at Pittsburgh, and those results are compared with the present ones. It is now possible to conclude that the energy resolution of the best detectors is independent of oxygen ion energy between 36.750 and 50 MeV and is about 100 keV (fwhm). When tested with sulphur ions, 4 of the detectors showed anomalous effects, including peaks and smudges both below and above the main peak. Some of these could be eliminated by varying the reverse bias voltage across the detector, others could not. In particular, the ORTEC detector 40, used in the previous work as the standard detector presently available, did not show a single peak at any bias. It is an excellent detector for oxygen ions, but is not useful for sulphur ions. The energy resolution of the best detectors for 51.086 MeV sulphur ions is under 300 keV (fwhm).  相似文献   

18.
We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3∕2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.  相似文献   

19.
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.  相似文献   

20.
The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H(-) ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H(-) high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号