首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出一种非接触式多圈角度传感器的实现方法。当与被测旋转物体轴向相连的径向磁化永磁体在与其平行的霍尔传感芯片上方旋转时,基于霍尔原理,传感芯片会输出关于旋转角度的相互正交的两路电压信号,经过单片机进行反正切运算可以得到0°~360°范围的角度信息。结合超级电容及外扩存储器,能够实现角度的多圈测量。利用此方法设计制作了样机,实验证明此方法能够实现精度±0.2°的角度测量和多圈的可靠计数。  相似文献   

2.
We have developed a nonconventional broadband electron spin resonance (ESR) spectrometer operating continuously in the frequency range from 0.5 to 9 GHz. Dual antenna structure and the microwave absorbing environment differentiate the setup from the conventional one and enable broadband operation with any combination of frequency or magnetic field modulation and frequency or magnetic field sweeping. Its performance has been tested with the measurements on a 1,1-diphenyl-2-picrylhydrazyl (DPPH) sample and with the measurements on the single molecular magnet, V6, in solid state at low temperature.  相似文献   

3.
We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.  相似文献   

4.
A magneto-optical setup for studying the time evolution of nanoscale domain-wall displacements of domain walls in magnetic films with a regular domain structure is described. Methods for spatial filtering of the output optical flux using the Fourier image of the domain structure and the impulse transient response in the real-time mode are applied in the setup. This allowed an increase in the sensitivity to domain-wall displacements of up to 5 nm and registration of their evolution with a temporal resolution of 1 ns.  相似文献   

5.
Quality control and defect monitoring are of great importance to the semiconductor industry. This article presents a system to enable inspection of nanoscale features in-line with nanomanufacturing processes. The ultimate goal of this research is to integrate this metrology system into current semiconductor manufacturing processes to enable true in-line wafer inspection and quality control. In the system presented in this paper, AFMs that have been shrunk down on to a single MEMS chip are used to scan the surface of a sample. A flexure-based mechanism allows the MEMS-based AFM to be positioned over a millimeter range of motion, with nanometer level precision when properly actuated. The performance of the system in areas such as positioning repeatability, AFM stability and measurement resolution are evaluated in this study. Owing to the small size of single-chip AFM (1 million times smaller than a conventional AFM instrument), it is a good candidate for multipoint detection. Overall, the system presented in this paper significantly shortens inspection time and dramatically decreases the setup time required for an AFM to load, approach, and measure a sample making in-line inspection of nanoscale features in semiconductor manufacturing systems feasible.  相似文献   

6.
We present a novel technique to measure high frequency electron spin resonance spectra in a broad frequency range (30-1440 GHz) with high sensitivity. We use a quasioptical setup with tunable frequency sources to induce magnetic resonance transitions. These transitions are detected by measuring the change in the magnetic torque signal by means of cantilever torque magnetometry. The setup allows tuning of the frequency, magnetic field, polarization, and the angle between the sample and the external magnetic field. We demonstrate the capabilities of this technique by showing preliminary results obtained on a single crystal of an Fe(4) molecular nanomagnet.  相似文献   

7.
We report on the design, construction, and operation of a horizontal field, 30 T magnet system with a conical bore optimized for synchrotron x-ray powder diffraction. The magnet offers ±31° optical access downstream of the sample, which allows to measure a sufficiently large number of Debye rings for an accurate crystal structure analysis. Combined with a 290 kJ generator, magnetic field pulses of 60 ms length were generated in the magnet, with a rise time of 4.1 ms and a repetition rate of 6 pulses/h at 30 T. The coil is mounted inside a liquid nitrogen bath. A liquid helium flow cryostat reaches into the coil and allows sample temperature between 5 and 250 K. The setup was used on the European Synchrotron Radiation Facility beamlines ID20 and ID06.  相似文献   

8.
The crystal monochromator beamline KMC-1 at a BESSY II bending magnet covers the energy range from soft (1.7 keV) to hard x-rays (12 keV) employing the (n,-n) double crystal arrangement with constant beam offset. The monochromator is equipped with three sets of crystals, InSb, Si (111), and Si (422) which are exchangeable in situ within a few minutes. Beamline and monochromator have been optimized for high flux and high resolution. This could be achieved by (1) a windowless setup under ultrahigh-vacuum conditions up to the experiment, (2) by the use of only three optical elements to minimize reflection losses, (3) by collecting an unusually large horizontal radiation fan (6 mrad) with the toroidal premirror, and (4) the optimization of the crystal optics to the soft x-ray range necessitating quasibackscattering crystal geometry (theta(Bragg,max)=82 degrees) delivering crystal limited resolution. The multipurpose beamline is in use for a variety of user facilities such as extended x-ray absorption fine structure, ((Bio-)EXAFS) near-edge x-ray absorption fine structure (NEXAFS), absorption and fluorescence spectroscopy. Due to the windowless UHV setup the k edges of the technologically and biologically important elements such as Si, P, and S are accessible. In addition to these experiments this beamline is now extensively used for photoelectron spectroscopy at high kinetic energies. Photon flux in the 10(11)-10(12) photons/s range and beamline resolving powers of more than E/DeltaE approximately 100.000 have been measured at selected energies employing Si (nnn) high order radiation in quasibackscattering geometry, thus photoelectron spectroscopy with a total instrumental resolution of about 150 meV is possible. This article describes the design features of the beamline and reports some experimental results in the above mentioned fields.  相似文献   

9.
An in-house built aerosol generator setup for in situ gas phase studies of aerosol and nanoparticles is described. The aerosol generator with an ultrasonic ceramic disk mist maker provides high enough particle concentrations for structural gas phase analysis by synchrotron small angle x-ray scattering (for water approximately 4 x 10(8) droplets/s with a droplet size of approximately 2.5 microm). The working principle was proved by scattering of gold nanoparticles. For evaporation induced self-assembly studies of nanostructured particles, an additional thermal treatment chamber was included in the setup. The first on-line gas phase data with our setup for mesostructured silica particles are presented for different thermal treatments. Scanning electron microscope imaging revealed the average particle size to be approximately 1 microm. Furthermore, to quantify their internal nanostructure, diffraction experiments of deposited silica aerosols were carried out and the corresponding electron density map indicates a silica wall thickness of about 1 nm.  相似文献   

10.
A white beam microdiffraction setup has been developed on the bending magnet source BM32 at the European Synchrotron Radiation Facility. The instrument allows routine submicrometer beam diffraction to perform orientation and strain mapping of polycrystalline samples. The setup features large source to optics distances allowing large demagnification ratios and small beam sizes. The optics of the beamline is used for beam conditioning upstream a secondary source, suppressing any possible interference of beam conditioning on beam size and position. The setup has been designed for an easy and efficient operation with position control tools embedded on the sample stage, a high magnification large aperture optical microscope, and fast readout detectors. Switching from the white beam mode to the monochromatic mode is made easy by an automatic procedure and allows the determination of both the deviatoric and hydrostatic strain tensors.  相似文献   

11.
高精度电磁标定力的产生及其特性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
高精度标定力的产生是微推力高精度测量的关键之一。电磁力具有非接触、结构简单、容易控制等优势,成为微推力测量系统有效的标定力产生方法。针对微推力测量对于电磁标定力的性能要求,研究了磁铁与线圈之间相对位置变化对电磁力大小的影响关系,通过仿真计算得到了轴向距离、径向偏差、相对倾角变化下的电磁力输出特性:相对倾角、径向偏差不为0时,电磁力均会变大,且关于磁铁中心轴线具有对称性,沿轴向距离,电磁力先增大后减小。基于天平称重法,设计了可三维调节的电磁力测量装置,提出了轴向距离、径向偏差、相对倾角的归零调节方法;获得了电磁力较为完备的力学特性,通过分段拟合方法,解决了在较小标定力时相对误差较大的问题,确定了电磁力及电流的控制关系及相对位置变化范围;提出了不敏感角、不敏感径向偏差、不敏感轴向距离区间等新概念,为电磁力产生装置的性能表征提供了具体参数。  相似文献   

12.
We report on the design and implementation of a rotating sample magnetometer (RSM) operating in the variable temperature insert (VTI) of a cryostat equipped with a high-field magnet. The limited space and the cryogenic temperatures impose the most critical design parameters: the small bore size of the magnet requires a very compact pick-up coil system and the low temperatures demand a very careful design of the bearings. Despite these difficulties the RSM achieves excellent resolution at high magnetic field sweep rates, exceeding that of a typical vibrating sample magnetometer by about a factor of ten. In addition the gas-flow cryostat and the high-field superconducting magnet provide a temperature and magnetic field range unprecedented for this type of magnetometer.  相似文献   

13.
High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.  相似文献   

14.
A novel ion wide angle spectrometer (iWASP) has been developed, which is capable of measuring angularly resolved energy distributions of protons and a second ion species, such as carbon C(6 +), simultaneously. The energy resolution for protons and carbon ions is better than 10% at ~50 MeV/nucleon and thus suitable for the study of novel laser-ion acceleration schemes aiming for ultrahigh particle energies. A wedged magnet design enables an acceptance angle of 30°(~524 mrad) and high angular accuracy in the μrad range. First, results obtained at the LANL Trident laser facility are presented demonstrating high energy and angular resolution of this novel iWASP.  相似文献   

15.
为了探究三稳态压电振动能量采集器的动力学特性,以磁-机-压电耦合型三稳态压电振动能量采集器(tristable piezoelectric vibration energy harvester,简称TPVEH)为研究对象,利用磁荷法、力平衡和基尔霍夫定律分别建立了采集器末端磁铁与外部磁铁之间的非线性磁力模型和系统集总参数动力学模型。仿真分析了磁铁间距、激励加速度幅值和频率等参数对采集器动力学特性和采集电压的影响。研制了三稳态压电振动能量采集器原理样机,搭建了实验测试平台,实验验证了仿真结果的正确性。研究结果表明,随着激励加速度幅值增大,能量采集器依次经历单稳态、双稳态和三稳态3种运动状态,且三稳态运动时的工作频带和输出性能(位移、速度和采集电压)比双稳态和单稳态时要高。  相似文献   

16.
This paper introduces the development of the caliper system for a geometry PIG (Pipeline Inspection Gauge). The objective of the caliper system is to detect and measure dents, wrinkles, and ovalities affect the pipe structural integrity. The developed caliper system consists of a finger arm, an anisotropic permanent magnet, a back yoke, pins, pinholes and a linear hall effect sensor. The angle displacement of the finger arm is measured by the change of the magnetic field in sensing module. Therefore the sensitivity of the caliper system mainly depends on the magnitude of the magnetic field inside the sensing module. In this research, the ring shaped anisotropic permanent magnet and linear hall effect sensors were used to produce and measure the magnetic field. The structure of the permanent magnet, the back yoke and pinhole positions were optimized that the magnitude of the magnetic field range between a high of 0.1020 Tesla and a low of zero by using three dimensional nonlinear finite element methods. A simulator was fabricated to prove the effectiveness of the developed caliper system and the computational scheme using the finite element method. The experimental results show that the developed caliper system is quite efficient for the geometry PIG with good performance.  相似文献   

17.
A magnetic fluid simultaneously has hydrodynamic and electromagnetic properties because its characteristics depend on whether a magnetic field is applied or not. The studies conducted so far on actuators that use a magnetic fluid are insufficient. A magnetic fluid has an added advantage in that it can be applied to small or micro systems because of its nanoscale particle size. Therefore, this research investigated the braking characteristics of a small disk brake that used a magnetic fluid. First, magnetostatic analysis of the magnetic field produced by a permanent magnet was conducted, and then, the pressure distribution in the magnetic acted upon by the magnetic body force from the permanent magnet was analyzed using the governing equations of a magnetic fluid. So, in this research, the torque characteristic of small disk brake by a magnetic body force was studied through the relation between the magnetic field intensity and rotational disk velocity. In addition, the torque characteristics of the brake due to a magnetization of the magnetic fluid were confirmed experimentally.  相似文献   

18.
In recent years, there has been a stronger demand for the weight reduction of components of various portable electronic devices. This work is motivated by the need to reduce the weight of a camera shutter module without much decreasing the torque generated by its magnetic circuit. Because the camera shutter speed is most significantly affected by the torque, the magnitude of the generated torque should also be considered in the design for the weight reduction. Thus, we formulate the design problem as a torque maximization problem under various mass constraints. Specifically, we propose to formulate it as a topology optimization problem of magnetic circuits and find optimal shapes of yokes (and magnets) in the circuits. For the maximization formulation, the objective function is chosen as the average of clockwise and counterclockwise torques over a whole range of rotation angles of a magnet corresponding to the shutter opening angle. Limits on the mass of the yoke and magnet in a magnetic circuit are imposed as constraints. The torque generated by a magnetic circuit is calculated by the modified Maxwell stress tensor method. A series of mass constraint ratios is considered to investigate the effects of the mass usage on the magnitude of torque generated by optimized circuits. The region occupied by the yoke (and the magnet) is designated as a design domain, while coils are assumed to belong to a non-design domain. By demonstrating that the optimized magnetic circuits outperform a nominal circuit, the use of the average torque as an objective function including a corresponding treatment of a rotating magnet proposed in this work is shown to be effective for the topology optimization of magnetic circuits in a camera shutter module.  相似文献   

19.
We describe the setup to create a large Bose-Einstein condensate containing more than 120 x 10(6) atoms. In the experiment a thermal beam is slowed by a Zeeman slower and captured in a dark-spot magneto-optical trap (MOT). A typical dark-spot MOT in our experiments contains 2.0 x 10(10) atoms with a temperature of 320 microK and a density of about 1.0 x 10(11) atoms/cm(3). The sample is spin polarized in a high magnetic field before the atoms are loaded in the magnetic trap. Spin polarizing in a high magnetic field results in an increase in the transfer efficiency by a factor of 2 compared to experiments without spin polarizing. In the magnetic trap the cloud is cooled to degeneracy in 50 s by evaporative cooling. To suppress the three-body losses at the end of the evaporation, the magnetic trap is decompressed in the axial direction.  相似文献   

20.
A setup for measuring mechanical losses of silicon wafers has been fully characterized from room temperature to 4 K in the frequency range between 300 Hz and 4 kHz: it consists of silicon wafers with nodal suspension and capacitive and optical vibration sensors. Major contributions to mechanical losses are investigated and compared with experimental data scanning the full temperature range; in particular, losses due to the thermoelastic effect and to the wafer clamp are modeled via finite element method analysis; surface losses and gas damping are also estimated. The reproducibility of the measurements of total losses is also discussed and the setup capabilities for measuring additive losses contributed by thin films deposited on the wafers or bonding layers. For instance, assuming that additive losses are due to an 80-nm-thick wafer bond layer with Young modulus about ten times smaller than that of silicon, we achieve a sensitivity to bond losses at the level of 5x10(-3) at 4 K and at about 2 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号