首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 227 毫秒
1.
ICP(电感耦合等离子体)离子源是目前质谱分析中最常用的离子源之一,具有电离效率高、分析产物主要为单电荷离子等特点。因其优良的性能,现已广泛应用于不同行业中。为了继续提升ICP-MS(电感耦合等离子体质谱)的分析性能,拓宽应用领域,许多学者通过实验研究,建模仿真对ICP离子源进行了深入研究。本文对这些工作进行了阐述,介绍了不同的影响因素对等离子体特性的影响。如气体流速、功率大小、采样深度等,并对有无质谱采样接口时的等离子体的特性进行比较,为优化等离子体离子源提供思路。  相似文献   

2.
A 2.45 GHz microwave ion source coupled with a magnesium charge exchange canal (C × C) has been successfully adapted to a large acceptance radiocarbon accelerator mass spectrometry system at the National Ocean Sciences Accelerator Mass Spectrometry (AMS) Facility, Woods Hole Oceanographic Institution. CO(2) samples from various preparation sources are injected into the source through a glass capillary at 370 μl∕min. Routine system parameters are about 120-140 μA of negative (12)C current after the C × C, leading to about 400 (14)C counts per second for a modern sample and implying a system efficiency of 0.2%. While these parameters already allow us to perform high-quality AMS analyses on large samples, we are working on ways to improve the output of the ion source regarding emittance and efficiency. Modeling calculations suggest modifications in the extraction triode geometry, shape, and size of the plasma chamber could improve emittance and, hence, ion transport efficiency. Results of experimental tests of these modifications are presented.  相似文献   

3.
The versatile ion source (VIS) is an off-resonance microwave discharge ion source which generates a slightly overdense plasma (n(e) ≈ 10(17) cm(-3)) operating at 2.45 GHz and producing more than 50 mA of proton beams. A detailed characterization of the source, by operating between 60 and 75 kV, in terms of emittance, current extracted and proton fraction is reported below. Moreover, passive techniques (alumina coating of the plasma chamber walls, BN disks at the injection and extraction endplates) have been used to improve the performance of the source, increasing the electron density for a more efficient ionization. The know-how achieved with the VIS source may be useful for the different project, particularly for the European spallation source.  相似文献   

4.
Ion beam transport from the Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) electron cyclotron resonance ion source was studied at the Institute of Modern Physics during 2010. Particle-in-cell simulations and experimental results have shown that both space charge and magnetic aberrations lead to a larger beam envelope and emittance growth. In the existing SECRAL extraction beam line, it has been shown that raising the solenoid lens magnetic field reduces aberrations in the subsequent dipole and results in lower emittance. Detailed beam emittance measurements are presented in this paper.  相似文献   

5.
Selective production of exotic species (SPES) is an ISOL-based accelerator facility that will be built in the Legnaro INFN Laboratory (Italy), intended to provide an intense neutron-rich radioactive ion beams obtained by proton induced fission of an uranium carbide target. Beside this main target, a silicon carbide (SiC) target will the first to be used to deliver some p-rich beams. This target will validate also the functionality of the SPES facility with aluminum beam as result of hitting SiC target with protons. In the past off-line studies on laser photoionization of aluminum have performed in Pavia Spectroscopy Laboratory and in Laboratori Nazionali di Legnaro where, recently, a XeCl excimer laser was installed in order to test the laser ionization in the SPES hot cavity. Results are promising to justify further studies with this technique, aiming a better characterization of the SPES ion extraction capability under laser photoionization.  相似文献   

6.
One of the main goal of intense light ion injector projects such as IPHI, IFMIF, or SPIRAL2, is to produce high current beams while keeping transverse emittance as low as possible. To prevent emittance growth induced in a dual solenoid low energy transfer line, its length has to be minimized. This can be performed with the advanced light ion source extraction system concept that we are developing: a new ECR 2.45 GHz type ion source based on the use of an additional low energy beam transport (LEBT) short length solenoid close to the extraction aperture to create the resonance in the plasma chamber. The geometry of the source has been considerably modified to allow easy maintenance of each component and to save space in front of the extraction. The source aims to be very flexible and to be able to extract high current ion beams at energy up to 100 kV. A specific experimental setup for this source is under installation on the BETSI test bench, to compare its performances with sources developed up to now in the laboratory, such as SILHI, IFMIF, or SPIRAL2 ECR sources. This original extraction source concept is presented, as well as electromagnetic simulations with OPERA-2D code. Ion beam extraction in space charge compensation regime with AXCEL, and beam dynamics simulation with SOLMAXP codes show the beam quality improvement at the end of the LEBT.  相似文献   

7.
In this paper we present our measurements of charge-state and current-density distributions performed in very close vicinity (15 mm) of the extraction of our hexapole geometry electron cyclotron resonance ion source. We achieved a relatively high spatial resolution reducing the aperture of our 3D-movable extraction (puller) electrode to a diameter of only 0.5 mm. Thus, we are able to limit the source of the extracted ion beam to a very small region of the plasma electrode's hole (? = 4 mm) and therefore to a very small region of the neutral plasma sheath. The information about the charge-state distribution and the current density in the plane of the plasma electrode at each particular position is conserved in the ion beam. We determined the total current density distribution at a fixed coaxial distance of only 15 mm to the plasma electrode by remotely moving the small-aperture puller electrode which contained a dedicated Faraday cup (FC) across the aperture of the plasma electrode. In a second measurement we removed the FC and recorded m/q-spectra for the different positions using a sector magnet. From our results we can deduce that different ion charge-states can be grouped into bloated triangles of different sizes and same orientation at the extraction with the current density peaking at centre. This confirms observations from other groups based on simulations and emittance measurements. We present our measurements in detail and discuss possible systematic errors.  相似文献   

8.
A new numerical Monte Carlo method based model of a hot cavity surface ionization ion source is presented in this paper. The model, intended to support the studies on ionization phenomena in a widely used class of ion sources, takes into account geometry of the ion source and extraction system, ionizer temperature and other features. The results of ion source efficiency calculations for various configurations of the extraction field are reviewed. The dominant role of the ionizer region near the extraction opening is described. Simulated dependences of ionization efficiency on the working parameters like ionizer length and temperature, ionization potential of the substance, and extraction voltage are discussed. A good agreement of the experimental data (e.g., influence of ionizer temperature, current-voltage curve) and the predictions of the model is found. It is also shown that the contribution to the ionization yield from impact of thermionic electrons accelerated by the extraction field may be significant, especially for the substances of small surface ionization coefficient. The simulation results are compared to the predictions of different theoretical models of the ion source--the obtained simulation data are in accordance both with a well-known Kirchner formula and the so called spherical ionizer model.  相似文献   

9.
Using improved beam diagnostic tools, the structure of an ion beam extracted from an electron cyclotron resonance ion source (ECRIS) becomes visible. Especially viewing targets to display the beam profile and pepper pot devices for emittance measurements turned out to be very useful. On the contrary, diagnostic tools integrating over one space coordinate like wire harps for profile measurements or slit-slit devices, respectively slit-grid devices to measure the emittance might be applicable for beam transport investigations in a quadrupole channel, but are not very meaningful for investigations regarding the given ECRIS symmetry. Here we try to reproduce the experimentally found structure on the ion beam by simulation. For the simulation, a certain model has to be used to reproduce the experimental results. The model is also described in this paper.  相似文献   

10.
Resonant ionisation laser ion sources are nowadays extensively used, when available, at many leading on-line facilities. Moreover, new laser ion sources are now under development in most of the recent on-line facility projects under construction worldwide. This success is mainly due to the reliability, the ionization efficiency and the high purity that this type of source can achieve for the production of radioactive species and for a large range of chemical elements. Laser ion sources for radioactive beams gather many different systems such as dye laser or all-solid state titanium:sapphire laser systems, high or low repetition rates, hot cavities or gas cells, additional selectivity by using chemical techniques, or the LIST technique (laser ion source trap). In this paper, the physics of laser ion sources will be described with the current limitations and challenges for the future. An overview of the laser ion source facilities will be given, with an emphasis on the ongoing developments and perspectives on LIS.  相似文献   

11.
A new, compact design of an ion source delivers nanosecond pulsed ion beams with low emittance, which can be focused to micrometer size. By using a high-power, 25 fs laser pulse focused into a gas region of 10(-6) mbar, ions at very low temperatures are produced in the small laser focal volume of 5 mum diameter by 20 mum length through multiphoton ionization. These ions are created in a cold environment, not in a hot plasma, and, since the ionization process itself does not significantly heat them, have as a result essentially room temperature. The generated ion pulse, up to several thousand ions per pulse, is extracted from the source volume with ion optical elements that have been carefully designed by simulation calculations. Externally triggered, its subnanosecond duration and even smaller time jitter allow it to be superimposed with other pulsed particle or laser beams. It therefore can be combined with any type of collision experiment where the size and the time structure of the projectile beam crucially affect the achievable experimental resolution.  相似文献   

12.
Further improvements of electron cyclotron resonance ion sources (ECRIS) output currents and average charge state require a deep understanding of electron and ion dynamics in the plasma. This paper will discuss the most recent advances about modeling of non-classical evidences like the sensitivity of electron energy distribution function to the magnetic field detuning, the influence of plasma turbulences on electron heating and ion confinement, the coupling between electron and ion dynamics. All these issues have in common the non-homogeneous distribution of the plasma inside the source: the abrupt density drop at the resonance layer regulates the heating regimes (from collective to turbulent), the beam formation mechanism and emittance. Possible means to boost the performances of future ECRIS will be proposed. In particular, the use of Bernstein waves, in preliminary experiments performed at Laboratori Nazionali del Sud (LNS) on MDIS (microwave discharge ion sources)-type sources, has permitted to sustain largely overdense plasmas enhancing the warm electron temperature, which will make possible in principle the construction of sources for high intensity multicharged ions beams with simplified magnetic structures.  相似文献   

13.
李宝强  张众垚  孔景临  张琳  郭成海  李翠萍 《质谱学报》2020,41(3):221-235,I0001
军事、公共安全和应急救援等对现场、实时、准确、快速检测技术提出了迫切需求。敞开式离子化质谱技术可以现场直接分析样品,具有简单、快速、无需样品前处理、可分析多种相态物质的特点。本文总结了基于激光、等离子体和电喷雾原理的敞开式离子化技术的研究进展,介绍了敞开式离子化质谱技术在化学战剂、生物和爆炸物检测领域的应用,并对敞开式离子化质谱技术面临的问题和未来研究方向进行了总结与展望。  相似文献   

14.
Proposed plasma generation system can be used for high current negative ion beam production and for directed deposition by flux of sputtered neutrals and negative ions. The main mechanism of negative ion formation in surface plasma sources is the secondary emission from low work function surface bombarded by a flux of positive ion or neutrals. The emission of negative ions is enhanced significantly by introducing a small amount of cesium or other substance with low ionization potential. In the proposed source are used positive ions generated by Hall drift plasma accelerator (anode layer plasma accelerator or plasma accelerator with insulated channel, with cylindrical or race track configuration of emission slit). The target-emitter is bombarded by the ion beam accelerated in crossed ExB fields. Negative ions are extracted from the target surface with geometrical focusing and are accelerated by negative voltage applied between emitter and plasma, contacting with the plasma accelerator. Hall drift ion source has a special design with a space for passing of the emitted negative ions and sputtered particles through the positive ion source.  相似文献   

15.
The properties of the electromagnetic waves heating the electrons of the ECR ion sources (ECRIS) plasma affect the features of the extracted ion beams such as the emittance, the shape, and the current, in particular for higher charge states. The electron heating methods such as the frequency tuning effect and the double frequency heating are widely used for enhancing the performances of ECRIS or even for the routine operation during the beam production. In order to better investigate these effects the CAPRICE ECRIS has been operated using these techniques. The ion beam properties for highly charged ions have been measured with beam diagnostic tools. The reason of the observed variations of this performance can be related to the different electromagnetic field patterns, which are changing inside the plasma chamber when the frequency is varying.  相似文献   

16.
The principles and applications of time-of-flight mass spectrometry involving instruments with independent (orthogonal) axes for ion generation and mass analysis are reviewed. This approach, generally referred to as orthogonal acceleration time-of-flight mass spectrometry, has proved particularly advantageous for the combination of continuous ionization sources with time-of-flight mass spectrometry. The history of the technique is briefly discussed along with the instrumental principles pertaining to all the stages of the instrumentation from ion source to detector. The applications of commercial and customized instruments are discussed for several ionization methods including electrospray, matrix assisted laser desorption/ionization, electron ionization, and plasma ionization.  相似文献   

17.
In generally accepted emittance measurement, main attention is concentrated on emittance areas ?(x), ?(y) occupied by desired part of ion beam in transverse phase space and shape of these areas. The absolute beam phase density (brightness) as usually is not measured directly and the average beam brightness B is calculated from a beam intensity I and the transverse emittances. In the ion source and low energy beam transport (LEBT) optimization, it is important to preserve the beam brightness because some aberration of ion optic and beam instabilities can decrease the brightness of the central part of ion beam significantly. For these brightness measurements, it is convenient to use an absolute beam brightness detector with the brightness determination from one short considered in this article.  相似文献   

18.
An energetic helium neutral beam is involved in the beam neutralization measurement system of alpha particles confined in a DT fusion plasma. A full size strong-focusing He(+) ion source (2 A, the beam radius of 11.3 mm, the beam energy less than 20 keV). Present strong-focusing He(+) ion source shows an emittance diagram separated for each beamlet of multiple apertures without phase space mixing, despite the space charge of a beamlet is asymmetric and the beam flow is non-laminar. The emittance of beamlets in the peripheral region was larger than that of center. The heat load to the plasma electrode was studied to estimate the duty factor for the ITER application.  相似文献   

19.
The ion source is one of the key devices for the high-intensity cyclotron, which exerts influence on the beam intensity and applications of the machine. The H(-) multi-cusp ion source developed at China Institute of Atomic Energy has been used to perform experimental study on beam intensity and emittance versus the bias voltage, arc power, lens voltage, and pressure of the ion source. Up to now, 18 mA H(-) ion beam with emittance of 0.93 πmm mrad (four times RMS normalized emittance) was obtained from this ion source through the in-depth study and optimization on some essential factors affecting the beam intensity and quality. The paper will present the experimental study on the ion source as well as the beam test results.  相似文献   

20.
A detailed experimental and simulation study of the extraction of a 24 keV He(+) beam from an ECR ion source and the subsequent beam transport through an analyzing magnet is presented. We find that such a slow ion beam is very sensitive to space-charge forces, but also that the neutralization of the beam's space charge by secondary electrons is virtually complete for beam currents up to at least 0.5 mA. The beam emittance directly behind the extraction system is 65 π mm mrad and is determined by the fact that the ion beam is extracted in the strong magnetic fringe field of the ion source. The relatively large emittance of the beam and its non-paraxiality lead, in combination with a relatively small magnet gap, to significant beam losses and a five-fold increase of the effective beam emittance during its transport through the analyzing magnet. The calculated beam profile and phase-space distributions in the image plane of the analyzing magnet agree well with measurements. The kinematic and magnet aberrations have been studied using the calculated second-order transfer map of the analyzing magnet, with which we can reproduce the phase-space distributions of the ion beam behind the analyzing magnet. Using the transfer map and trajectory calculations we have worked out an aberration compensation scheme based on the addition of compensating hexapole components to the main dipole field by modifying the shape of the poles. The simulations predict that by compensating the kinematic and geometric aberrations in this way and enlarging the pole gap the overall beam transport efficiency can be increased from 16% to 45%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号