首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corrosion behaviour of high-alloy steels in the system H2O/NH3/CO2/H2S/HCN/HSCN (Part 1) The effect of hydrogen sulfide, hydrogen cyanide, polysulfide and hydrogen thiocyanate on the corrosion behaviour of high-alloy steels and a nickel base alloy in solutions containing ammonium carbonate is studied by using electrochemical methods. The essential mechanisms influencing the value of corrosion attack are shown by schematic diagrams. Low H2S concentrations will increase the corrosion rate, high concentrations will decrease it by forming a protective sulfide layer. Polysulfide stabilizes the free corrosion potential in the passive region of the materials at the redox potential because of the cathodic current of sulfur reduction. HCN on the one hand increases the corrosion rate of active specimens in solutions containing H2S by removing the protective sulfide layer, on the other hand it inhibits the corrosion in solutions containing HSCN. Even in solutions containing H2S are inhibiting effects and instable passivity possible at specimens covered with an oxydic layer. The value of corrosion attack in solutions containing HSCN will be increased by CO2 and depends on the nickel content of the materials.  相似文献   

2.
The influence of hydrogen sulphide on the corrosion of iron in acid solutions A considerable change of the polarisation behaviour of iron electrodes in acidic perchlorate and sulphate solutions was observed if they where saturated with hydrogen sulfide gas. H2S markedly increased the anodic current densities and increases the corrosion rates by a factor of ten. The anodic Tafel slopes d log iA/dE are only about half as steep as those in the absence of hydrogen sulphide. It is probable that the SH?-ions behave as catalysts of the iron dissolution reaction in a similar manner as the OH?-ions, but are adsorbed almost to saturation.  相似文献   

3.
文中通过极化曲线、交流阻抗、Mott-Schottky曲线、浸泡腐蚀试验等方法对316L奥氏体不锈钢TIG焊接头各区域在不同浓度H2S溶液中的耐蚀性能进行了研究.极化曲线及交流阻抗结果表明,随着溶液中H2S浓度的升高,焊接接头各区域的耐蚀性明显降低.另一方面对于相同浓度的H2S溶液,316L基体的耐蚀性最好,其次是热影响区,焊缝区的耐蚀性最差.Mott-Schottky曲线结果表明,焊接接头在H2S溶液中的表面钝化膜形成p-n结结构,掺杂浓度高达1022 cm-3,且掺杂浓度随H2S浓度升高而增大,致使钝化膜防护性能降低.  相似文献   

4.
Abstract

Corrosion of mild steel in aqueous solutions containing hydrogen sulphide was modelled under the condition that an iron sulphide film was formed on the steel surface. In the present model, the iron sulphide forms on the steel surface as a result of a solid state reaction between iron and hydrogen sulphide which has several steps. First a very thin film of iron sulphide nucleates on the steel surface. Then, due to further growth of the initial thin layer, a more porous layer of iron sulphide forms on the initial film. In the present model, it is assumed that mass transfer through the thin iron sulphide layer (i.e. adjacent to the steel substrate) controls the corrosion rate of steel in H2S aqueous solutions, and as a result electrochemical reactions were not considered. The model was verified against the published experimental data and effects of some parameters such as hydrogen sulphide partial pressure were investigated. The results show that increase in partial pressure of hydrogen sulphide leads to an increase in the corrosion rate of mild steel at the primary stages of the reaction, but as a consequence of formation of iron sulphide scales on the steel surface, it drops with respect to time.  相似文献   

5.
Effects of Mo, V, Nb, Ti, Zr and their carbides on the corrosion and hydrogen uptake of iron in H2S-solutions Effects of the transition metals Mo, V, Nb, Ti, Zr and their carbides as well as of phosphorous on the corrosion and hydrogen uptake of iron in acid to weakly acid NaCl solutions with and without H2S are discussed. Investigations were carried out on binary, ternary and quaternary iron based alloys, using electrochemical and surface analytical methods. No specific effect of one of the alloying elements or the carbides on the corrosion or hydrogen uptake is observed. Due to the experimental conditions, sulphur and oxygen enriched surface scales form, by which the kinetics of the corrosion processes are determined. The alloying elements are enriched on the iron surface only as a carbide. Phosphorous is enriched as a phosphide at low pH and as a phosphate at higher pH. H2S and phosphides increase the corrosion rate and hydrogen uptake. In pure iron or low strength iron alloys, at the very high H2S affected hydrogen activities new lattice defects are induced permanently resulting in extremely high hydrogen concentrations.  相似文献   

6.
Abstract

High temperature and high pressure immersion tests in an autoclave were employed to study the corrosion behaviour of X52 pipeline steel in aqueous solutions containing high concentrations of H2S. The corrosion products generated were characterised using scanning electron microscope, energy dispersive spectroscopy and X-ray diffraction. It was seen that at a constant H2S concentration of 22 g/l, the corrosion rate increased with increasing temperature up to 90°C, thereafter decreased at 120°C and slightly increased again at 140°C while the corrosion rate increased with H2S concentration at a temperature of 90°C. When the temperature and H2S concentration increased, the corrosion product converted from iron rich to sulphur rich products in the following sequence: mackinawite→troilite→pyrrhotite, where the microstructure and stability of the corrosion products had an important effect on the corrosion rate. The corrosion film was formed through the combination of the outward diffusion of Fe2+ ions and the inward diffusion of H2S and HS? species.  相似文献   

7.
The corrosion rates of iron thin film in deaerated phosphate solutions were measured by an electrochemical quartz crystal microbalance as a function of solution pH or phosphorus concentration in solutions. The dependences of corrosion rate and corrosion potential on solution pH and phosphorus concentration have suggested that the corrosion mechanism changes in the vicinity of pH 5 and H2PO4 contributes to both anodic dissolution of iron and hydrogen evolution. The corrosion mechanism which contains iron-phosphate-hydroxide complex ion as an adsorbed intermediate was proposed to explain the experimental results.  相似文献   

8.
The electrochemical behavior of SAE-1020 carbon steel in 0.25 M Na2SO4 solution containing different concentrations of H2S at 90 °C was investigated using the methods of weight loss, electrochemical measurements, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed that the corrosion rate of carbon steel increased significantly with the increase of H2S concentration. H2S accelerated the corrosion rate of SAE-1020 carbon steel by a promoted hydrogen evolution reaction. Severe corrosion cavities were observed on the carbon steel surface in the solutions containing H2S due to cementites stripped off from the grain boundary. The loose corrosion products formed on the steel surfaces were composed of mackinawite.  相似文献   

9.
Aqueous solutions with 3 mol L−1 (M) diethanolamine (DEA) concentration are extensively used in the gas processing industry to remove acid gases. However, the degradation of the DEA and the formation of heat-stable salts (HSS) lead to severe corrosion problems. Even worse, equipment corrosion can be magnified by the unavoidable presence of sulphide acid and dissolved oxygen as a result of hydrocarbon (natural gases and crude oil) processing. The aim of this work is to study the combined corrosion effects of DEA, sulphide acid and oxygen on carbon steel. Electrochemical methods revealed that in the 3 M DEA medium without oxygen, corrosion processes are modulated by adsorbed DEA film formation. Furthermore, it was shown that the addition of oxygen and 15 × 10−3 mol L−1 (15 mM) H2S produced the formation of an adherent film on the carbon steel surface. Chemical analyses by EDAX revealed a homogeneous film of corrosion products composed of iron oxide and sulphide formed in DEA solution containing O2 and H2S, respectively. Equivalent circuits were used to estimate the parameters associated with ion diffusion through the formed corrosion films. The results showed that the presence of H2S induced the formation of thin iron sulphide films that provide protective properties to the metal. It is concluded that the presence of oxygen in a sweetening plant should be avoided as DEA degradation can be produced with the subsequent decrease in chelating process efficiency and the increase in corrosion problems.  相似文献   

10.
For preparing an ultrathin two-dimensional polymer coating adsorbed on passivated iron, a 16-hydroxyhexadecanoate ion HO(CH2)15CO2 self-assembled monolayer (SAM) was modified with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. Protection of passivated iron against passive film breakdown and corrosion of iron was investigated by monitoring of the open-circuit potential and repeated polarization measurements in an aerated 0.1 M Na2SO4 solution during immersion for many hours. The time required for passive film breakdown of the polymer-coated electrode was markedly higher in this solution than that of the passivated one, indicating protection of the passive film from breakdown by coverage with the polymer coating. The protective efficiencies of the passive film covered with the coating were extremely high, more than 99.9% in 0.1 M Na2SO4 before the passive film was broken down, showing prominent cooperative suppression of iron corrosion in the solution by coverage with the passive film and polymer coating. The polymer-coated surface was characterized by contact angle measurement and electron-probe microanalysis (EPMA). Prevention of passive film breakdown and iron corrosion for the polymer-coated electrode healed in 0.1 M NaNO3 was also examined in 0.1 M Na2SO4.  相似文献   

11.
The anodic and cathodic behaviour of iron in sulphate containing electrolytes The formation of Fe2(SO4)3 on passive iron at pH = 1 appears probable from a thermodynamical point of view. At high SO42? concentrations the equilibrium system contains but low concentrations of Fe3+, and no Fe2+ ions, a fact showing the relatively elevated stability of the Fe2(SO4)3 layer on passive iron. In slightly acid solution (pH = 4) the passivity of the iron is determined by iron oxide layers. The formation of FeSO4 from metallic iron and sulphate ions is restricted to the transpassive zone (pH 4 to 7), in alkaline solutions even to the active zone. In the pH region 2 to 14 the passive layer on iron has about the same composition in the systems Fe|H2O + SO42? and Fe|H2O.  相似文献   

12.
Effects of Alloying Elements on Corrosion and Hydrogen Uptake of Iron in Sulfuric Acid Part II: Corrosion and Formation of Surface Layers The effects of C, S, P, Mn, Si, Cr, Ni, Sn and Cu on the formation of surface layer and hydrogen uptake of iron during corrosion in 1 M H2SO4/N2 were investigated using AES, XPS, SEM and electrochemical permeation techniques. Cu, Sn, P and C are enriched on the surface of iron during corrosion in H2SO4. Cu is enriched in the metallic form. P forms a phosphate and phosphide containing surface layer. Ni is not enriched. Cr is preferentially dissolved. Cu, Sn and Ni inhibit the dissolution of iron and thus decrease the hydrogen activity. S, P and Mn (MnS) increase the corrosion and hydrogen activity. Cr forms traps in iron which increase the hydrogen uptake.  相似文献   

13.
碳化对模拟混凝土孔溶液中HRB335钢腐蚀行为的影响   总被引:1,自引:0,他引:1  
应用电化学阻抗谱、循环伏安与动电位极化等方法研究了碳化后模拟混凝土孔溶液pH值的变化对钢筋腐蚀电化学行为的影响.结果表明,随着pH值的下降钢筋表面钝化膜的稳定性与耐蚀性不同程度地降低.当模拟液pH值为12.5与11.5时,钝化膜的稳定性处于因pH值降低导致的钝化膜溶解与表面沉积物CaCO3或含钙氧化物CaFe2O4等耐...  相似文献   

14.
The nature of the protective passive layer on the corrosion resistant Delhi iron pillar (DIP) has been addressed based on a detailed characterization of its rust. Rust characterization clearly established that the major constituents of the scale were crystalline iron hydrogen phosphate hydrate (FePO4·H3PO4·4H2O), α-, γ-, δ-FeOOH and magnetite. The iron oxide/oxyhydroxides were present in the amorphous form. The role of slag particles in the matrix of the DIP iron in enhancing the passive film formation is briefly addressed initially. The process of protective rust formation on DIP iron is outlined based on the rust analysis. Initially, the corrosion rate of iron is high due to the presence of slag particles. This results in enhancement of surface P content. In the presence of P, the formation of a protective amorphous compact layer of δ-FeOOH, next to the metal surface, is catalyzed and this confers the initial corrosion resistance. The critical factor contributing to the superior corrosion resistance of the DIP, however, is the formation of iron hydrogen phosphate hydrate, as a thin layer next to the metal–metaloxide interface. The formation of the crystalline modification of this phosphate from the amorphous form is aided by alternate wetting and drying cycles (i.e. the environmental factor). The rate of corrosion is further lowered due to the low porosity content of the crystalline phosphate phase. The passive film formation on the DIP has been contrasted with the rusting of normal and weathering steels.  相似文献   

15.
Corrosion of brass in ammonium chloride solutions The corrosion behaviour of brass (Cu77Zn21A/2, with and without addition of As) has been investigated in 0.01 to 1 M ammonium chloride solution of PH 4 and 2, and in solutions 1 M in chloride ion, with variable Na+ and NH+4 concentrations (total concentration 1 M in each case), at pH 4 and 2. While arsenium-free brass was attacked by dezincification in most cases, intercrystalline corrosion was found on As-containing brass. The latter type of corrosion is found already at As contents as low as 0.01%. In a medium 1 M in chloride ion intercrystalline corrosion is found at PH 2, irrespective of the ammonium ion concentration, while at PH 4 intercrystalline corrosion is found only at higher ammonium ion concentrations (practically 1 M). The intercrystalline corrosion was found to be due to the segregation of Zn and As respectively at the grain boundaries and to the influence of As on the stability of the CuCl?2 formed by the anodic reaction. The influence of the solution composition on the progress in time of the intercrystalline corrosion is explained.  相似文献   

16.
Investigation into the influence of sulfide and sulfate ions on the corrosion of iron in alcaline solution The corrosion behaviour of Armco iron as well as that of a technical high-strength steel was investigated in sulphide - and sulphate-containing electrolytes of pH ~ 12.6. Current density - potential curves show that iron, after successful passivation, remains passive and protected against corrosion in a solution saturated with CaS, CaSO4 and Ca(OH)2 at potentials up to 800 mV(EH). Passivation experiments conducted by changing from the active region to various anodic potentials yielded a critical potential region around 300 mV(EH), above which corrosion appeared. Up to EH = 200 mV complete passivation was observed. The same critical potential region was observed in experiments of repassivation after mechanical damaging of a protective passive layer. Additional tensile stresses of 85%· σ0,2 caused no stress corrosion cracking at a potential of 500 mV(EH). After damaging the passive layer, through scratching of the stressed wires fracture occured at and above potentials of 300 mV(EH). At 200 mV(EH) repassivation was observed even under tensile load. In a sulphate-free Na2S/Ca(OH)2 solution of the same sulphide ion concentration no stress corrosion cracking of the samples occured at any potential up to 800 mV(EH) even after scratching the steel samples. The observed stress corrosion in sulphide - and sulphate-containing electrolytes is to be ascribed to the action of sulphate and not to sulphide ions.  相似文献   

17.
An ultrathin, ordered and two-dimensional polymer coating was prepared on passivated iron by modification of 16-hydroxyhexadecanoate ion HO(CH2)15CO2 self-assembled monolayer (SAM) with 1,2-bis(triethoxysilyl)ethane (C2H5O)3Si(CH2)2Si(OC2H5)3 and octadecyltriethoxysilane C18H37Si(OC2H5)3. Protection of passivated iron against passive film breakdown and corrosion of iron was examined by monitoring of the open-circuit potential and repeated polarization measurements in an aerated 0.1 M NaNO3 solution during immersion for many hours. Passive film breakdown on the polymer-coated electrode in the solution was not observed during immersion for 480 h, whereas that of the passivated one occurred at 18.1 h, indicating protection of the passive film from breakdown by coverage with the polymer coating. The protective efficiencies of the passive film covered with the coating were extremely high, around 99.9% in the initial region of the immersion time up to 72 h and more than 98.3% thereafter, indicating prominent cooperative suppression of iron corrosion in 0.1 M NaNO3 by coverage with the passive film and polymer coating. The polymer-coated surface was characterized by contact angle measurement and electron-probe microanalysis.  相似文献   

18.
The rates of the hydrogen evolution reaction (h.e.r.), corrosion (icorr) and hydrogen penetration (h.p.) of AlSI 4130 steel in H2 SO4 (PH 2) have been determined. These rates for film-free (fresh) surfaces and film-covered (aged) surfaces are shown to be substantially different. Sulfide-promoted h.p. of this steel by H2S and thiourea and hexynol, in the absence and presence of halides (Cl, Br and I) have been examined. Both acetylenes are effective inhibitors for corrosion and h.p. of this steel. Furthermore, hexynol has been shown to reduce significantly sulfide-promoted h.p. with the effect completely eliminated in H2SO4-KI solutions. The h.p. experiments indicate that the hydrogen concentration in 4130 steel can be almost 3 orders of magnitude greater than in Ferrovac E iron.  相似文献   

19.
Chemical and electrochemical reactions of iron sulfide and manganese sulfide in acid and neutral solutions The reactions which occur upon corrosion of massive iron sulfide and manganese specimens in perchloric acid and in neutral sodium chloride solution were elucidated by measurements of current-potential curves and by coulometric and analytical investigations on the processes. In acids the sulfides are dissolved by prevailing chemical reaction under evolution of H2S. Upon applying anodic overpotentials electrochemical reactions occur simultaneously, however, with such low velocity that the contribution to corrosion of the sulfides is insignificant. Upon applying cathodic overpotentials some hydrogen discharge is observed on iron sulfide but not on manganese sulfide. In 3% sodium chloride solution both sulfides corrode very slowly upon anodic polarization, forming elementary sulfur according to MeS = Me2+ + S + 2e? (Me = Fe or Mn). At high anodic potentials additional oxidation reactions occur in which three-valent iron and tetravalent manganese ions as well as sulfite and sulfate ions are formed. Iron sulfide and manganese sulfide inclusions can he isolated from steels only by electrochemical dissolution in neutral or weakly basic electrolytes, the potential during electrolysis must not be more positive than the corrosion potential of the sulfides.  相似文献   

20.
Investigation into the hydrogen induced cracking corrosion – Part 2: Comparative investigations into hydrogen permeation Creep specimens of cold rolled pure iron with different strengths have been stressed in H2SO4 + As2O3 undercathodic polarisation. The critical stress level for stress corrosion cracking is proportional to the yield strength ranging about 60% ys. At higher stresses the life times decrease with increasing strengths. No correlation exists with permeation rate and hydrogen content, but with time lag. Low alloy steel types show similar relationships in the same and in H2S containing environments. Metallographic examinations show no relation between stress corrosion cracks and surface or inside blisters. SEM examinations show manyfold types of fracture surfaces without systematics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号