首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Bracken (Pteridium aquilinum) is an important wild plant starch resource worldwide. In this work, starch was separated from bracken rhizome, and the physicochemical properties of this starch were systematically investigated and compared with 2 other common starches, that is, starches from waxy maize and potato. There were significant differences in shape, birefringence patterns, size distribution, and amylose content between bracken and the 2 other starches. X‐ray diffraction analysis revealed that bracken starch exhibited a typical C‐type crystalline structure. Bracken starch presented, respectively, lower and higher relative degree of crystallinity than waxy maize and potato starches. Ordered structures in particle surface differed among these 3 starches. The swelling power tendency of bracken starch in different temperature intervals was very similar to that of potato starch. The viscosity parameters during gelatinization were the lowest in waxy maize, followed by bracken and potato starches. The contents of 3 nutritional components, that is, rapidly digestible, slowly digestible, and resistant starches in native, gelatinized, and retrograded starch from bracken rhizome presented more similarities with potato starch than waxy maize starch. These finding indicated that physicochemical properties of bracken starch showed more similarities with potato starch than waxy maize starch.  相似文献   

2.
研究瓜尔胶和黄原胶对马铃薯淀粉、马铃薯磷酸酯淀粉和马铃薯阳离子淀粉糊化和流变性质的影响。糊化性质实验表明瓜尔胶增加了3种淀粉的峰值黏度和成糊温度,降低了淀粉糊的热稳定性。黄原胶降低了马铃薯淀粉和马铃薯磷酸酯淀粉的峰值黏度并提高了糊的热稳定性和成糊温度,但对马铃薯阳离子淀粉起相反作用。动态流变实验表明加入黄原胶显著提高了3种淀粉的GO`、GO`O`值,降低了损耗角正切值tanδ,黄原胶对马铃薯阳离子淀粉动态流变学性质的影响最大,瓜尔胶对3种淀粉的动态流变学性质的影响不显著。静态流变实验表明加入瓜尔胶和黄原胶后的淀粉糊仍为假塑性流体,滞后环面积减少,稳定性提高,两种胶对马铃薯淀粉和马铃薯磷酸酯淀粉的作用比对马铃薯阳离子淀粉作用明显,并且黄原胶比瓜尔胶对淀粉作用更为显著。研究发现胶体与淀粉之间的电荷相互作用对复配体系的糊化性质和流变学性质起重要的作用。  相似文献   

3.
以高筋小麦粉为原料添加酵母制作面团,在温度28℃、湿度80%条件下发酵1~6 h,提取小麦淀粉。研究发酵时间对小麦直链淀粉含量、损伤淀粉含量、粒径、颗粒表面结构、糊化及消化特性的影响。结果表明:面团发酵1 h后直链淀粉含量和损伤淀粉含量均显著低于原淀粉(P<0.05)。快速黏度分析结果表明,发酵1 h的小麦淀粉峰值黏度、热浆黏度和冷浆黏度最低。发酵处理后淀粉的粒径均小于原淀粉,其中发酵5 h的平均粒径最小。扫描电镜结果表明,发酵6 h的小麦淀粉颗粒表面出现破裂现象。体外消化实验表明,发酵5 h和6 h小麦淀粉的消化速率最高,发酵后抗性淀粉含量低于原淀粉,而慢消化淀粉含量高于原淀粉(P<0.05)。  相似文献   

4.
脂类和颗粒结合蛋白对小麦A、B淀粉理化性质的影响   总被引:1,自引:0,他引:1  
淀粉颗粒中的脂类和颗粒结合蛋白对其理化和结构性质存在一定影响,研究了小麦A、B淀粉经脱脂、脱蛋白处理后其化学组成、颗粒形态、糊特性等性质。结果表明:脱脂处理对小麦A、B淀粉的晶体类型、溶解度、膨胀度、起始温度、峰值温度、终值温度、热焓值、峰值黏度、谷黏度、衰减值、最终黏度、峰值时间、成糊温度均无显著性影响,相对结晶度降低。脱蛋白处理使小麦淀粉溶解度和膨胀度随温度的增长趋势显著增加,相对结晶度、起始温度、峰值温度、终值温度、峰值黏度、衰减值、回生值显著增大,谷黏度和峰值时间显著降低,对晶体类型、热焓值无显著影响。脱蛋白处理对小麦A、B淀粉理化性质的影响显著高于脱脂处理。  相似文献   

5.
This study was carried out in order to compare the functional characteristics of isolated starch from five tuber crops, yam, taro, sweet potato, yam bean and potato, as well as effect of guar gum (GG) and locust bean gum (LBG) on pasting and thermal properties of tuber starches. The results showed that total amylose content of five tested starches ranged from 17.85% to 30.36%. The results of pasting behaviour showed that potato starches exhibited the highest peak viscosity and yam starch presented a stable curve with little breakdown viscosity. Addition of GG and LBG resulted in a significant increase in peak, final viscosity, breakdown and setback viscosity for all tuber starches ( P  < 0.05), but a slight decrease in pasting temperature. The gelatinisation enthalpy (Δ H ) for starches with GG and LBG was slightly lower than those of the starches alone in yam and sweet potato, but not in taro and yam bean.  相似文献   

6.
The effect of heat-moisture treatment (30% moisture, 100C, 16 h) and annealing (75 % moisture, 50C, 72 h) on the flow behavior of gelatinized starch pastes from wheat, oat, lentil and potato starches were studied at a concentration of 6% starch with a cone and plate viscometer (Wells Brookfield RVTDV II CP 200). The power law rheological model (σ=Kγn) was used to describe the flow behavior of the above starch pastes. All native starches exhibited a non-Newtonian shear thinning behavior. A thixotropic loop was evident only in oat starches and native potato starch. Among native starches, the magnitude of the shear thinning index (n) followed the order: oat > wheat > lentil > potato, while the corresponding order for the consistency index (K) was: potato > lentil > wheat > oat. Heat-moisture treatment decreased the K value of all starches. On annealing, K decreased in wheat and lentil starches, but increased in potato and oat starches. Heat-moisture treatment and annealing increased the n value of wheat, lentil and potato starches, but decreased that of oat starch. In all starches, the modification to the flow behavior was more marked on heat-moisture treatment than on annealing.  相似文献   

7.
Canna edulis Ker starch was modified by heat-moisture treatment at moisture levels ranging from 18 to 27 g/100 g starch and its physicochemical properties were investigated. Amylose content, swelling power, solubility as well as water and oil absorption capacity in native starch were higher than in all treated starches. However, alkaline water retention and acid susceptibility of native starch were lower, along with different extent of amylose leaching. The result in the X-ray diffraction measurement revealed that the crystalline type of the starch gradually changed from B-type to A-type, and the degree of crystallinity changed. Investigation on thermal properties showed that the gelatinization enthalpy decreased, whereas the onset temperature, peak temperature, concluding temperature and transition temperature range increased in modified starch than in native starch. In addition, all modified starches exhibited remarkably low values of peak viscosity, hot pasting viscosity and final viscosity, compared to those of native starch.  相似文献   

8.
The physico-chemical properties of starches isolated from native and malted finger millet, pearl millet and foxtail millet were studied. Malt starches, as compared with native starches, contained a majority of smaller granules, slightly more amylose, and exhibited higher gelatinisation temperature, lower swelling power, higher solubility in water as well as in dimethyl sulfoxide and lower intrinsic viscosity. The in-vitro digestibility of starches from native and malted millets was more or less similar but it was different for different starches: pearl millet starch was more susceptible whereas finger millet starch was slighly resistant for amylolysis.  相似文献   

9.
The effect of hydroxpropyl β-cyclodextrin (HPβ-CD) on physical properties and digestibility of wheat, potato, waxy maize and high-amylose maize starches before and after acetylation was studied. Effect of HPβ-CD on amylose–lipid complexes in native and acetylated potato starches synthesized using α-lysophosphatidylcholine was also studied. Acetylation increased swelling factor, amylose leaching, peak viscosity and susceptibility to α-amylase hydrolysis, but decreased gelatinization temperature and enthalpy and gel hardness in all starches. HPβ-CD markedly increased swelling factor and amylose leaching in native and acetylated wheat starches but had little or no impact on other starches. Wheat starch gelatinization enthalpy decreased in the presence of HPβ-CD but gelatinization temperature of all the starches was slightly increased. HPβ-CD had no influence on enzymatic hydrolysis. Melting enthalpy of amylose–lipid complex in both native and acetylated wheat starches was decreased by HPβ-CD. Acetylation also decreased the melting enthalpy of amylose–lipid complex in wheat starch. Similar trend of thermal transitions was observed in the presence of HPβ-CD for the amylose–lipid complexes synthesized in potato starch. Acetylation reduces the complex formation ability of the amylose polymer. Similar to gelatinization, acetylation widened the melting temperature range of amylose–lipid complexes while shifting it to a lower temperature. Higher swelling and amylose leaching, and decreased gelatinization temperature and enthalpy resulting from acetylation of wheat starch is consistent with its influence on starch hydration. Similar effects resulting from the inclusion of HPβ-CD were consistent with the disruption of amylose–lipid complex by HPβ-CD which promotes granular hydration.  相似文献   

10.
The defatting of both corn and wheat starch with 85% methanol yields starches which start to gelatinise at lower temperatures and have increased overall viscosities compared with untreated starches. The lipids extracted from wheat and corn starch with 85 % methanol were similar in total amount but showed very large differences in the proportions of neutral and phospholipids. The extracted corn lipids contained eight times as much neutral lipids (mainly free fatty acids) as phospholipids whereas the proportions of neutral and phospholipids in wheat starch were approximately equal. Addition of extracted lipids to defatted starches significantly modified the swelling and viscosity characteristics. Addition of wheat and corn lipids to potato starch (which contains almost no lipids) indicated that the higher percentage of phospholipids in wheat starch probably contributed towards the lower viscosity characteristics of wheat starch compared with corn starch.  相似文献   

11.
颗粒状冷水可溶淀粉糊性质的研究   总被引:2,自引:0,他引:2  
在常压下,用醇解法制备了不同溶解度的颗粒状冷水可溶淀粉系列,并对玉米、木薯和马铃薯原淀粉及其不同溶解度的颗粒状冷水可溶淀粉糊的性质进行了研究。试验证明,相对于原淀粉糊,醇解法制备的颗粒状冷水可溶玉米淀粉糊的表观粘度和冻融稳定性有所提高,凝沉性降低;颗粒状冷水可溶木薯和马铃薯淀粉糊的表观粘度、凝沉性和冻融稳定性均降低。三种颗粒状冷水可溶淀粉糊的透明度大大提高,且随着溶解度提高其透明度增大。  相似文献   

12.
High amylose corn starch (HACS) and potato starch were hydrolyzed by pancreatic α‐amylase in vitro. Residues after hydrolysis were collected and characterized for their physicochemical properties and molecular structure. Compared with raw starches, residues had lower apparent amylose contents and higher resistant starch contents. The gelatinization enthalpy of residues from HACS increased while enthalpy of residues from potato starch decreased from 15.4 to 11.3 J/g. Peak viscosity and breakdown values of the residues from potato starch were markedly decreased but final viscosity values did not show much change. Chain length distribution of debranched amylopectin from the residues indicated that the relative portion of short chain in the residue decreased for both starches. More molecules with intermediate chain length (DP 16—31) were found in residue after 48‐h hydrolysis of potato starch.  相似文献   

13.
Low‐temperature nitrogen adsorption and mercury porosimetry were applied for analyzing effect of α‐amylolysis upon the porosity of granules of native corn, wheat, rice, and potato starches. Specific surface area (SBET), porosity, pore size distribution, total pore area, and mean pore radius were determined for native and digested granules. It was found that native starch granules are macroporous materials with a small participation of mesopores. In the case of native starches, the highest value of SBET was obtained for rice starch (1.27 m2/g) and the lowest – for potato starch (0.14 m2/g). Pore size distribution curves obtained by nitrogen adsorption showed peaks in the range of diameters 2–3 nm (for all starches) and 100–200 nm (for corn and rice starches). After 60 min of enzyme action, surface area of all starches doubled in comparison to native ones. Arising of the new pores was also noted. The results of mercury porosimetry measurements showed that rice starch had the highest total area of pores and porosity but the lowest mean pore radius among all native starches. The pore size distribution curves for all starches exhibited solely one peak corresponding to the dominant group of pores of the radii in the range 0.5–8 µm, dependent on the starch source. There were also much smaller peaks situated within the range of 3–30 µm. After α‐amylolysis of corn and rice starches, the average radius of the dominant group of pores diminished. No substantial changes in the pore radii could be noted for potato starch.  相似文献   

14.
Cassava, sweet potato and arrowroot starches have been subjected to heat‐moisture treatment (HMT) under different conditions using a response surface design of the variables. A comparative study was performed on the pasting properties, swelling behaviour and the gelatinization properties of the modified starches and also on the rheological and textural properties of their pastes. X‐ray diffraction studies have shown that cassava starch exhibited a slight decrease in crystallinity, whereas sweet potato and arrowroot starches showed an increase in crystallinity after HMT at 120ºC for 14 h with 20% moisture. The swelling volume was reduced and the solubility was enhanced for all three starches after HMT, but both effects were more pronounced in the case of arrowroot starch. The decrease in paste clarity of the starch after HMT was higher in the case of cassava and sweet potato starches. Viscosity studies showed that the peak viscosity of all three starches decreased after HMT, but the paste stability increased as seen from the reduced breakdown ratio and setback viscosity. Studies on rheological properties have shown that storage and loss moduli were higher for the starches heat‐moisture treated at higher moisture and lower temperature levels than the corresponding native starches. Storage of the gel at ‐20ºC resulted in a significant increase in storage modulus for all the three starches. All the textural parameters of the gels were altered after the treatment which depended on the nature of the starch and also the treatment condition.  相似文献   

15.
This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch.  相似文献   

16.
The oxidising effects of organic (acetic, citric and lactic) acids on the physicochemical properties of starches from cassava, potato and jicama were investigated. Cassava starch oxidised with lactic and citric acids had the highest carbonyl contents (5.43 and 5.84 g kg?1 respectively), while oxidised potato starch had the highest carboxyl contents. Oxidised jicama starch showed the lowest carbonyl and carboxyl contents. Oxidation increased the maximum viscosity of cassava starch (from 426.61 to 670.11 relative viscosity units (RVU)) and jicama starch (from 160.17 to 561.50 RVU) but decreased that of potato starch (from 669.44 to 206.92 RVU). When carbonyl and carboxyl groups were incorporated into jicama starch granules, the resistance of these granules to stirring at constant temperature (holding) increased, as did their final and retrogradation viscosities. However, the behaviour of oxidised cassava and potato starches, as indicated by a Rapid Visco Analyser, was different. The highest values of endotherm enlargement were found for native and oxidised jicama starch, while the lowest values were found for native and oxidised cassava starch. Native and oxidised potato starch had the highest enthalpy values (14.30–18.30 J g?1), while jicama starch had the lowest (9.50–11.9 J g?1). The high intrinsic viscosity of native potato starch was attributed to B‐type starch with a longer‐than‐average amylopectin chain length and a lower degree of crystallinity. Oxidised granules showed little erosion in the form of grooves; on the contrary, oxidation left the grains with a very smooth surface. Copyright © 2007 Society of Chemical Industry  相似文献   

17.
G. Tegge  G. Richter 《Starch - St?rke》1986,38(10):329-335
On the Enzymatic Hydrolysis of Various Starches. The behaviour of different commercial starches to amylolytic enzyme preparations and of their hydrolyzates during raffination was investigated. No significant differences in final degree of saccharification of starches from yellow maize, waxy maize, amylo-maize, potatoes and wheat were observed. The lower De-values of waxy maize hydrolyzates after liquefaction were completely compensated during final saccharification phase. Determinations of viscosity after liquefaction and saccharification always showed highest viscosity in raw hydrolyzates produced from wheat starch. After filtration of the raw hydrolyzates these differences in viscosity were no more observed. Addition of pentosanase during sacharification period did not affect viscosity and filtration of the hydrolyzates. Glucoamylase with increased pentosanase activity affected filtration of wheat starch hydrolyzates positively; viscosity kept unchanged. Development of enzymatic liquefaction of the individual starches was studied by means of a Brabender Viscograph. By this informative differences between potato and waxy maize starches on one side and maize and wheat starches on the other side were observed.  相似文献   

18.
Starches from potato (Mainechip, ND651-9 and Commercial) and Navy and Pinto bean were isolated and the pasting and thermal properties examined. Analysis by Rapid Visco-Analyzer (RVA) showed potato starches had lower pasting temperatures, higher peak viscosity, and lower setback than bean starches. High intrinsic viscosity values obtained for the potato starch indicated higher average molecular weight for the potato starches compared to the bean starches. Characterization of thermal (gelatinization and retrogradation) properties of starches by Differential Scanning Calorimetry (DSC) showed that potato starches had sharp, well-defined gelatinization thermograms, while bean starches had broad, shallow thermograms with higher peak temperature (Tp). Potato starches required higher gelatinization enthalpies than bean starches. In comparison with gelatinization, the retrogradation thermograms of starches stored at three different temperatures (23,4 and −10°C) were broader and occurred at the lower temperatures. Compared to potato starches, Navy and pinto bean starches showed a higher retrogradation enthalpy at 4 and 23°C storage temperatures, but a lower enthalpy at −10°C.  相似文献   

19.
Amorphous granular starches (AGS) and non-granular amorphous starches (non-AGS) of corn, tapioca and rice were prepared using high hydrostatic pressure (HHP) treatment with ethanol and water washing, respectively and their physicochemical properties were investigated. Water holding capacity and apparent viscosity of AGS and non-AGS were higher than those of native one in all starches. In RVA pasting properties, AGS and non-AGS showed higher pasting temperature and lower peak viscosity than those of native one. Furthermore, non-AGS showed distinctively lower peak viscosity compared to that of AGS possibly due to its non-granular structure. Apparent viscosity of non-AGS revealed relatively lower than commercial pre-gelatinized starch because of heat and pressure-induced gelatinization. Maintaining granular structure in HHP treated pre-gelatinized starch provide a distinctive physicochemical characteristics compared to native starch and preparation of gelatinized starch with different gelatinization and washing methods could cause big differences in their physicochemical properties.  相似文献   

20.
本实验对小麦抗性淀粉和马铃薯抗性淀粉结构特征及体外消化性进行研究。结果表明,与小麦抗性淀粉相比,马铃薯抗性淀粉直链淀粉含量更高,分子质量分布更集中,热稳定性更高。两种抗性淀粉粒径相差不大,均为C型结构,化学结构相似,没有基团差异。小麦抗性淀粉分子颗粒完整,表面光滑,呈不规则的椭圆形,马铃薯抗性淀粉分子为不规则多面体,分子表面粗糙,有凹陷,且有少量的层状起伏。体外消化试验表明:马铃薯抗性淀粉具有更强的抗消化能力,血糖指数分别为40.62、40.50(GI<55),属于低GI食品。相关性分析结果为抗性淀粉体外消化率与其直链淀粉含量、碘吸收峰负相关,与其结晶度、热焓值显著负相关,与比表面积正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号