首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of pectin and guar gum on the creaming stability, microstructure and rheological properties of 1.0% (w/v) egg yolk plasma (EYP)-stabilized 25.0% (v/v) soybean oil-in-water emulsions was studied at pH 7.0. Addition of pectin/guar gum decreased creaming percentage, and no creaming was detected in the presence of 0.5% (w/v) pectin/guar gum as a result of increasing viscosity. At the end of 10 h, creaming percentage decreased from 61 to 57% with the addition of 0.05% (w/v) guar gum and to 39% with the addition of 0.2% (w/v) guar gum. Microscopic observations represented the droplet aggregation arising from the presence of nonabsorbing biopolymers. At \mathop g. \mathop \gamma \limits^{.}  = 10 s−1, a tenfold increase in viscosity was observed in the presence of 0.5% (w/v) guar gum compared to the presence of 0.1% guar gum due to the thickening effect of polysaccharide. Increasing gum concentrations enhanced the viscosity and hence the consistency index. All emulsions, except for those containing 0.5% (w/v) guar gum, reflect the near-Newtonian behaviour with flow behaviour index, n, of 0.9–1.0. All emulsions exhibited a liquid-like behaviour at low frequencies (<7.0 Hz) where G″ values were higher than G′. Both G′ and G″ showed a frequency dependency and these two moduli crossed each other at higher frequencies (>7.0 Hz), G′ became greater than G″ and the system behaved like an elastic solid. Addition of pectin at all levels cause no significant change in G′ and G″ values, whereas addition of guar gum, especially at a concentration of 0.5% (w/v), significantly improved these values.  相似文献   

2.
ABSTRACT:  Phase separation behavior of egg white-pectin/guar gum mixtures was investigated. These systems led to phase separation arisen by either depletion flocculation or thermodynamic incompatibility. The influence of polysaccharides on the emulsifying activity index (EAI), emulsifying stability index (ESI), creaming stability, microstructure, and rheological properties was also studied at different polysaccharide concentrations (0% to 0.5%, [w/v]). Increasing pectin and guar gum concentration from 0.01% to 0.5% significantly improved EAI by 51% and 25%, respectively. The highest ESI and EAI values were obtained in the presence of 0.5% (w/v) pectin/guar gum. Microscopic images showed that emulsions containing polysaccharides had small droplets as compared to that of emulsions without polysaccharides. The addition of polysaccharides improved emulsion stability against creaming. Egg white-stabilized emulsions with and without polysaccharides reflect the pseudoplastic behavior with  n  < 1.0. Polysaccharides, especially at high concentrations, affected the viscoelastic behavior of the emulsions; storage ( G ') and loss modulus ( G ") crossed-over at lower frequency values as compared to that of emulsions containing no polysaccharide.  相似文献   

3.
Dynamic oscillatory and steady-shear rheological tests were carried out to evaluate the rheological properties of whey protein isolate (WPI) stabilized emulsions with and without hydrocolloids (pectin and guar gum) at pH 7.0. Viscosity and also consistency index of emulsions increased with hydrocolloid concentration. At γ = 20 s−1, the value of viscosity of the emulsion with 0.5% (w/v) pectin was about fivefold higher than that of the emulsion without pectin. Flow curves were analyzed using power law model through a fitting procedure. Flow behaviour index of all emulsions except for containing 0.5% (w/v) guar gum was approximately in the range of 0.9–1.0, which corresponds to near-Newtonian behaviour. The shear thinning behaviour of emulsions containing 0.5% (w/w) guar gum was confirmed by flow behaviour index, n, of 0.396. Both storage (G′) and loss modulus (G″) increased with an increase in frequency. Emulsions behaved like a liquid with G″ > G′ at lower frequencies; and like an elastic solid with G′ > G″ at higher frequencies. Effect of guar gum was more pronounced on dynamic properties. Phase angle values decreased from 89 to <10° with increasing frequency and indicated the viscoelasticity of WPI-stabilized emulsions with and without pectin/guar gum.  相似文献   

4.
Rheological properties of single-phase, and emulsions containing modified starch and gum arabic as surface active hydrocolloids, as well as xanthan and tragacanth gums as stabilizers were evaluated under steady and dynamic shear testing conditions using a control stress rheometer. Emulsions were formed by 9% and 14% gum concentrations with oil concentration maintained at 9% thus giving a 1:1 and 1.5:1 surface active agent to oil ratio, respectively. The rates of droplet coalescence and creaming, for a total of 8 emulsions, as a function storage time before and after dilution in a simulated fruit beverage were then investigated. Steady shear (flow curve) were well described by the Carreau model at shear stress ranging from 0.01 to 100 Pa. All prepared water phases indicated a zero-shear viscosity plateau followed by shear thinning behavior with flow behavior index (n) ranging from 0.51 to 0.79 for 14% starch-0.3% xanthan and 14% gum arabic-0.8% tragacanth stabilized emulsions, respectively. The water phase flow property data were well fitted by the Einstein equation and its expansions. The dynamic rheological properties of water phase and emulsions were also evaluated for G′(ω) and G″(ω) from 1 to 50 rad/s. Similar curves were obtained with varying degrees of deviations (G′ from G″) for different emulsions. Starch-xanthan emulsion and associated water phase at 1.5/1 agent to oil ratio demonstrated viscoelastic behavior (G′ ≥ G″) with lower droplet coalescence and creaming rates. On the other hand, gum arabic-xanthan emulsion at 1:1 agent to oil ratio showed the highest rate of droplet coalescence and a greater degree of creaming. It was speculated that the lower stability of gum arabic-xanthan emulsion could be related to the denaturation of proteinaceous part in the gum and loss of emulsification capacity due to lower pH and pasteurization.  相似文献   

5.
Flaxseed protein concentrate containing-mucilage (FPCCM) was used to stabilize soybean oil-in-water emulsions. The effects of FPCCM concentration (0.5, 1.0, 1.5% w/v) and oil-phase volume fraction (5, 10, 20% v/v) on emulsion stability and rheological properties of the soybean oil-in-water emulsions were investigated. Z-average diameter, zeta-potential, creaming index and rheological properties of emulsions were determined. The result showed that FPCCM concentration significantly affected zeta-potential, creaming rate and emulsion viscosity. The increasing of FPCCM concentration led to a more negative charged droplet and a lower creaming rate. Oil-phase volume fraction significantly affected Z-average diameter, rheological properties, creaming index and creaming rate. With the increase of oil-phase volume fraction, both Z-average diameter and emulsion viscosity increased, while creaming index and creaming rate decreased. The rheological curve suggested that the emulsions were shear-thinning non-Newtonian fluids.  相似文献   

6.
The incorporation of relevant amounts of non-adsorbing hydrocolloids to oil-in-water (O/W) emulsions is a suitable alternative to reduce creaming. The effect of incorporating xanthan gum (XG) or guar gum (GG) in soy soluble polysaccharide (SSPS) stabilized oil-in-water (O/W) emulsions was studied. The emulsions contained 6 wt.% of SSPS, 20 wt.% Perilla seed oil (PSO), an omega-3 vegetable oil, and variable amounts of XG or GG ranging from 0.03 to 0.3 wt.%. The presence of minute amounts of XG or GG in fresh emulsions significantly decreased the emulsion droplet size (EDS) although such low concentrations did not provide enough continuous phase viscosity to arrest creaming. Emulsion microstructure indicated the presence of flocculation even at high concentrations of XG or GG caused by a depletion mechanism. All emulsions with XG or GG exhibited pseudoplastic behavior while the control emulsions showed an almost Newtonian behavior. Emulsion droplet polydispersion generally decreased with increase in the continuous phase viscosity indicating the importance of continuous phase viscosity in the dissipation of shear energy throughout the emulsion during homogenization. The characteristics of the emulsions were closely related to the rheological changes of the continuous phase.  相似文献   

7.
The influences of protein concentration (0.2, 1, 2 wt%) and oil-phase volume fraction (5%, 20%, 40% v/v) on emulsion stability and rheological properties were investigated in whey protein isolate (WPI)-stabilized oil-in-water emulsions containing 0.2 wt% xanthan gum (XG). The data of droplet size, surface charge, creaming index, oxidative stability, and emulsion rheology were obtained. The results showed that increasing WPI concentration significantly affected droplet size, surface charge, and oxidative stability, but had little effect on creaming stability and emulsion rheology. At 0.2 wt% WPI, increasing oil-phase volume fraction greatly increased droplet size but no significant effect on surface charge. At 1 or 2 wt% WPI, increasing oil-phase volume fraction had less influence on droplet size but led to surface charge more negative. Increasing oil-phase volume fraction facilitated the inhibition of lipid oxidation. Meanwhile, oil-phase volume fraction played a dominant role in creaming stability and emulsion viscosity. The rheological data indicated the emulsions may undergo a behavior transition from an entropic polymer gel to an enthalpic particle gel when oil-phase volume fraction increased from 20% to 40% v/v.  相似文献   

8.
The addition of low methoxy pectin to maximal acetylated faba bean globulin in o/w emulsion leads in the pH range between 5.5 and 6.5 to an increased protein content in the protein film around the oil droplets. This effect is accompanied with a rise of the apparent viscosity and flow behaviour index of the emulsions. In agreement with these modifications increased emulsion stability against creaming is found.  相似文献   

9.
Food emulsions exhibit a great diversity of rheological characteristics; hydrocolloids are usually added to deal with creaming instability. Viscoelastic measurements provide information about the microstructure of the system. The objectives of this work were: a) to determine the viscoelastic behavior of two different low in fat oil-in-water food emulsions: a gel like and a fluid type emulsions stabilized with hydrocolloids (gellan gum and xanthan-guar mixtures respectively) b) to model and predict the mechanical relaxation spectrum for both emulsions and continuous aqueous phases. Low-in-fat oil-in-water emulsions (20 g/100 g) were prepared using sunflower oil and Tween 80 (1 wt.%). Fluid emulsions containing xanthan and guar gums were formulated using a synergistic ratio 7:3, with total hydrocolloid concentration ranging between 0.5 to 2 wt%. The aqueous phases contained NaCl (2 wt.%) and acetic acid (2 wt.%). The effect of hydrocolloids was studied using oscillatory measurements (G’ and G” vs. frequency) within the linear viscoelastic range previously determined by stress-sweeps. Time-Concentration Superposition principle was applied to find the master curves that describe the mechanical spectra of the viscoelastic materials. Superposition allows to obtain a wide spectrum of nearly ten decades of frequencies in emulsions containing xanthan–guar mixtures, whereas gellan gum systems did not show a significant frequency displacement. Viscoelastic behavior of the systems was satisfactorily modeled using Baumgaertel-Schausberger-Winter (BSW) equation. This empirical model was used to predict the mechanical relaxation spectrum for both emulsions and continuous aqueous phases. Validation of the predicted spectra was carried out through creep compliance data for emulsion-filled gels and steady-state flow curves for emulsions containing xanthan–guar mixtures.  相似文献   

10.
In this study, development of pea (Pisum sativum) protein stabilised dry and reconstituted emulsions is presented. Dry emulsions were prepared by spray-drying liquid emulsions in a laboratory spray-dryer. The effect of drying on the physical stability of oil-in-water emulsions containing pea protein-coated and pea protein/pectin-coated oil droplets has been studied. Oil-in-water emulsions (5 wt.% Miglyol 812 N, 0.25 wt.% pea protein, 11% maltodextrin, pH 2.4) were prepared that contained 0 (primary emulsion) or 0.2 wt.% pectin (secondary emulsion). The emulsions were then subjected to spray-drying and reconstitution (pH 2.4). The stability of the emulsions to dry processing was then analysed using oil droplet size, microstructure, Zeta potential, and creaming measurements. Obtained results showed that the secondary emulsions had better stability to droplet aggregation after drying than primary emulsions. To interpret these results, we propound that pectin, an anionic polysaccharide, formed a less charged protective layer around the protein interfacial film surrounding the oil droplets that improved their stability to spray-drying mainly by increasing steric effects.  相似文献   

11.
Studies have been made of the changes in droplet sizes, surface coverage and creaming stability of emulsions formed with 30% (w/w) soya oil, and aqueous solution containing 1 or 3% (w/w) sodium caseinate and varying concentrations of xanthan gum. Addition of xanthan prior to homogenization had no significant effect on average emulsion droplet size and surface protein concentration in all emulsions studied. However, addition of low levels of xanthan (≤0.2 wt%) caused flocculation of droplets that resulted in a large decrease in creaming stability and visual phase separation. At higher xanthan concentrations, the creaming stability improved, apparently due to the formation of network of flocculated droplets. It was found that emulsions formed with 3% sodium caseinate in the absence of xanthan showed extensive flocculation that resulted in very low creaming stability. The presence of xanthan in these emulsions increased the creaming stability, although the emulsion droplets were still flocculated. It appears that creaming stability of emulsions made with mixtures of sodium caseinate and xanthan was more closely related to the structure and rheology of the emulsion itself rather than to the rheology of the aqueous phase.  相似文献   

12.
The rheological behavior and stability of oil-in-water emulsions stabilized by different thickening agents were analyzed. Food emulsions were prepared with commercial sunflower oil (40% w/w oil-in-water) and stabilized with 1% emulsifier. The tested thickeners were: (1) 1% w/w xanthan gum (XG), (2) 5% w/w potato starch (PS), (3) 5% PS + 0.5% XG, (4) 1% w/w guar gum (GG), and (5) 0.5% XG + 0.5% GG. Mean droplet size and droplet size distribution (DSD) of emulsions were determined by static light scattering. Steady flow (viscosity versus shear rate), transient flow (viscosity versus time) and oscillatory shear tests (linear viscoelasticity) were performed. The addition of thickening agents improved the stability of the emulsions, the effect was less marked in systems containing only GG. DSD was not significantly modified in emulsions containing starch or hydrocolloids. Microscopic observations showed that all the tested emulsions were flocculated due to the presence of hydrocolloids. The observed shear thinning behavior was attributed to the molecular structure of the polysaccharides and to the flocculation/deflocculation process; viscosity data were satisfactorily fitted to the Cross model. Frequency sweeps showed that emulsions with PS or XG have a weak gel structural network (G' > G); those with GG correspond to a polymeric solution where G' and G" curves intersect within the range of tested frequencies. The viscoelastic linear behavior was described according to the Maxwell generalized model. The discrete relaxation spectrum and relaxation times were estimated from the experimental values of G' and G" for emulsions with PS, PS + XG, and XG. Nonlinear viscoelasticity was also studied from stress relaxation curves at different shear strains. The damping function was calculated and the Soskey-Winter parameters were determined. Transient flow viscosities at different shear rates were comparable to the values estimated from stress relaxation measurements.  相似文献   

13.
The influence of calcium ions and chelating agents on the thermal stability of model nutritional beverages was examined. Oil-in-water emulsions (6.94% (w/v) soybean oil, 0.35% (w/v) WPI, 0.02% (w/v) sodium azide, 20 mM Tris buffer, 0–10 mM CaCl2, and 0–40 mM EDTA or citrate, pH 7.0) were stored at temperatures between 30 and 120 °C for 15 min. The particle size, particle charge, creaming stability, rheology, and free-calcium concentration of the emulsions were then measured. In the absence of chelating agents, appreciable droplet aggregation occurred in emulsions held at temperatures from 80 to 120 °C, which led to increased emulsion particle diameter, shear-thinning behavior, apparent viscosity, and creaming instability. Addition of chelating agents to the emulsions prior to heating decreased, but did not prevent, droplet aggregation in the emulsions. EDTA was more effective than citrate in decreasing droplet aggregation. Heat treatment increased the amount of chelating agents required to prevent droplet aggregation in the emulsions. Free-calcium concentration and droplet surface potential was independent of heat-treatment temperature, indicating that the performance of the chelating agents in binding calcium ions was not affected by the heat treatment. It was suggested that increased hydrophobic attractive interactions between the droplets occurred during heating, which induced droplet aggregation.  相似文献   

14.
The enzymatic crosslinking of polymer layers adsorbed at the interface of oil-in-water emulsions was investigated. A sequential two step process, based on the electrostatic deposition of pectin onto a fish gelatin interfacial membrane was used to prepare emulsions containing oil droplets stabilized by fish gelatin-beet pectin membranes (citrate buffer, 10 mM, pH 3.5). First, a fine dispersed primary emulsion (5% soybean oil (w/v), 1% (w/w) gelatin solution) (citrate buffer, 10 mM, pH 3.5) was produced using a high pressure homogenizer. Second, a series of secondary emulsions were formed by diluting the primary emulsion into pectin solutions (0 - 0.4% (w/w)) to coat the droplets. Oil droplets of stable emulsions with different oil droplet concentrations (0.1%, 0.5%, 1.0% (w/v)) were subjected to enzymatic crosslinking. Laccase was added to the fish gelatin-beet pectin emulsions and emulsions were incubated for 15 min at room temperature. The pH- and storage stability of primary, secondary and secondary, laccase-treated emulsions was determined. Results indicated that crosslinking occurred exclusively in the layers and not between droplets, since no aggregates were formed. Droplet size increased from 350 to 400 nm regardless of oil droplet concentrations within a matter of minutes after addition of laccase suggesting formation of covalent bonds between pectin adsorbed at interfaces and pectin in the aqueous phase in the vicinity of droplets. During storage, size of enzymatically treated emulsions decreased, which was found to be due to enzymatic hydrolysis. Results suggest that biopolymer-crosslinking enzymes could be used to enhance stability of multilayered emulsions.  相似文献   

15.
A novel supercritical fluid extrusion (SCFX) process was used to successfully texturize whey protein concentrate (WPC) into a product with cold-setting gel characteristics that was stable over a wide range of temperature. It was further hypothesized that incorporation of texturized WPC (tWPC) within an aqueous phase could improve emulsion stability and enhance the rheological properties of cold, gel-like emulsions. The emulsifying activity and emulsion stability indices of tWPC and its ability to prevent coalescence of oil-in-water (o/w) emulsions were evaluated and compared with the commercial WPC80. The cold, gel-like emulsions were prepared at different oil fractions (φ = 0.20–0.80) by mixing oil with the 20% (w/w) tWPC dispersion at 25 °C and evaluated using a range of rheological techniques. Microscopic structure of cold, gel-like emulsions was also observed by Confocal Laser Scanning Microscope (CLSM). The results revealed that the tWPC showed excellent emulsifying properties compared to the commercial WPC in slowing down emulsion breaking mechanisms such as creaming and coalescence. Very stable with finely dispersed fat droplets, and homogeneous o/w gel-like emulsions could be produced. Steady shear viscosity and complex viscosity were well correlated using the generalized Cox–Merz rule. Emulsions with higher viscosity and elasticity were obtained by raising the oil fraction. Only 4% (w/w) tWPC was needed to emulsify 80% (w/w) oil with long-term storage stability. The emulsion products showed a higher thermal stability upon heating to 85 °C and could be used as an alternative to concentrated o/w emulsions and in food formulations containing heat-sensitive ingredients.  相似文献   

16.
Relatively concentrated (40 wt%) O/W emulsions formulated with high-oleic sunflower oil as disperse phase, potato protein isolate as emulsifier and chitosan as stabiliser were prepared by rotor–stator/high-pressure valve/rotor–stator homogenization. The influence of chitosan concentration on the physical stability of emulsions was studied in (0.25–1) wt% range by visual inspection, rheological and microstructural techniques. Steady shear flow curves were sensitive to the occurrence of creaming upon the rise of zero-shear viscosity values. The effect of increasing concentration of chitosan on the zero-shear viscosity turned out to be dependent on emulsion ageing and always resulted in a stepwise increase of the critical shear rate for the onset of shear thinning flow. The critical oscillatory shear stress for the onset of non-linear viscoelastic behaviour was more sensitive than the critical shear rate to detect creaming in emulsions. Mechanical spectra are definitely demonstrated to be the most powerful tool to detect not only creaming but also oil droplet flocculation on account of changes in the plateau relaxation zone. CSLM micrographs supported the interpretation of dynamic viscoelastic results, especially when flocculation as well as coalescence took place. Cryo-SEM micrographs evidenced the formation of increasingly denser protein–polysaccharide networks with chitosan concentration and the fact that the latter governs the microstructure of the emulsion when reaches 1 wt% concentration promoting enhanced physical stability.  相似文献   

17.
ABSTRACT Oil‐in‐water emulsions (20% n‐hexadecane, v/v) were stabilized by dodecyltrimethylammonium bromide (DTAB), Tween 20, or sodium dodecyl sulfate (SDS). Particle size distribution and creaming stability were measured before and after adding Escherichia coli cells to emulsions. Both E. coli strains promoted droplet flocculation, coalescence, and creaming in DTAB emulsions, although JM109 cells (surface charge = ‐35 mV) caused faster creaming than E21 cells (surface charge = ‐5 mV). Addition of bacterial cells to SDS emulsions promoted some flocculation and coalescence, but creaming stability was unaffected. Droplet aggregation and accelerated creaming were not observed in emulsions prepared with Tween 20. Surface charges of bacterial cells and emulsion droplets played a key role in emulsion stability.  相似文献   

18.
Fish oil emulsions varying in sodium caseinate concentration (25% w/w oil and 0.1–1.0% w/w protein, giving oil-to-protein ratios of 250–25) were investigated in terms of their creaming stability, rheological properties, the mobility of oil droplets and the oil/protein interaction at the interface. The presence of excessive protein in an emulsion (i.e., at 1% w/w) caused the aggregation of oil droplets through depletion flocculation, resulting in low creaming stability and high low-shear viscosity. At a lower protein concentration (0.1% w/w), when protein was limited, the emulsion droplets were stabilised by bridging flocculation and showed good stability to creaming. Shear-thinning behaviour was observed for both flocculated emulsions. A reduction in the low-shear viscosity and a Newtonian flow was obtained for the emulsion containing an intermediate concentration of protein (0.25% w/w). At this concentration, there was relatively little excess unadsorbed protein in the continuous phase; thus the emulsion was most stable to creaming. NMR was used to characterise these emulsion systems without dilution. Shorter T2 values (by low-field 1H NMR), for the emulsions containing both high (1% w/w) and low (0.1% w/w) amounts of protein, indicated increased restricted mobility of oils, caused by depletion or bridging flocculation. The line broadening in oil signals in the high-field NMR spectra (1H, 13C) indicated increased interaction between oil molecules and proteins at the interface with increasing protein concentration in emulsions. In addition, 31P NMR spectra, which reflect the mobility of the casein component only, showed increased line broadening, with reduction in protein content due to the relatively higher proportion of the protein being adsorbed to the interface of the oil droplets, compared to that in the continuous phase (i.e., as the oil-to-protein ratio was increased). The T2 values of resonances of the individual groups on oil molecules, obtained using high-field 1H NMR, reflected their different environments within the oil droplet.  相似文献   

19.
The properties of oil/water emulsions stabilized with 1% w/v common bean (Phaseolus vulgaris L.) or scarlet runner bean (P. coccineus L.) proteins, extracted by isoelectric precipitation or ultrafiltration, at pH 7.0 and 5.5 were studied. The stability of emulsions, evaluated on the basis of droplet size, creaming, viscosity and protein adsorption measurements, is increased by the addition of xanthan (0.1 and 0.25% w/v). This is probably due to the increase in the continuous phase viscosity and the creation of a network, which prevents the oil droplets from coalescing. Also, the ability and stability of 1 or 2% w/v foams was studied. Xanthan (0.25% w/v) does not enhance foam formation, but promotes foam stability, possibly owing to the increased viscosity of the aqueous phase, making it more difficult for air to enter the system and create a satisfactory foam volume. The addition of NaCl destabilizes emulsions by lowering the energy barrier and therefore increasing the tendency of the oil droplets to aggregate. However, NaCl at a certain concentration seems to promote the emulsion stability and foaming ability and foam stability. This could be attributed to the alteration of the protein molecule configuration leading to the building of a rigid and viscoelastic protein film around the droplet. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
The capability of seed extracts in stabilizing emulsions has particularly received interest in recent years. Upon soaking quince seeds into water, biopolymers inside the seeds are extracted to water, forming mucilage. This study investigates the physical stability, rheology and microstructure of oil (sunflower oil) in water emulsions, stabilized by 2% (w/v) whey protein isolate with varying concentrations of xanthan and quince seed gum. Quince seed gum resulted in emulsions with smaller low-shear viscosities and shear thinning capabilities compared to the same concentrations of xanthan. Quince seed gum emulsions with concentrations  0.1 (w/v), displayed rapid creaming due to bridging flocculation. Despite the difference in apparent viscosities, for gum concentrations < 0.2 (w/v), both gums demonstrated comparable stability with xanthan gum in general yielding marginally more stable emulsions. Gum concentrations > 0.3 (w/v) resulted in physically stable emulsions even after 5 months. Overall, quince seed gum displayed significant emulsification and stabilization properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号