首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
周国发  阳培民  罗智  江先念 《化工学报》2017,68(3):1129-1137
模内微装配成型技术有望成为高效低成本产业化聚合物微小机械系统制造技术,而如何准确预测和精确控制热流固耦合变形仍是其工业化的技术瓶颈。为此研究建立了考虑二次黏弹性熔体充填流动边界约束作用的模内微装配成型黏弹性热流固耦合变形的理论预测模型,研究表明热流固耦合变形受控于微装配面所承受的热流固耦合压力、黏弹性支撑正应力、黏性摩擦拖曳剪切应力和微型轴的抗变形刚度,且随成型熔体注射速度提高而减小,而微型轴近表面局部跨越393 K区域的PMMA刚度急剧下降是导致微型轴热流固耦合变形随熔体注射速度增加而减小的主控因素。  相似文献   

2.
模内微装配成型技术有望成为高效低成本产业化聚合物微小机械系统制造技术,而如何准确预测和精确控制热流固耦合变形仍是其工业化的技术瓶颈。为此研究建立了考虑二次黏弹性熔体充填流动边界约束作用的模内微装配成型黏弹性热流固耦合变形的理论预测模型,研究表明热流固耦合变形受控于微装配面所承受的热流固耦合压力、黏弹性支撑正应力、黏性摩擦拖曳剪切应力和微型轴的抗变形刚度,且随成型熔体注射速度提高而减小,而微型轴近表面局部跨越393 K区域的PMMA刚度急剧下降是导致微型轴热流固耦合变形随熔体注射速度增加而减小的主控因素。  相似文献   

3.
以聚合物微型机械运动副模内微装配成型为研究对象,研究了二次成型过程参数和微型轴约束对二次成型充填流动诱发的预成型固体微型轴热流固耦合变形的影响规律和机理。结果表明,预成型微型轴的热流固耦合变形随着二次成型熔体注射温度的提高而增加,而随着预成型微型轴在二次成型模腔中二端的约束程度增加而减小;减小二次成型充填熔体的注射温度或增大微型轴约束程度有利于减小二次成型熔体充填流动诱发的预成型微型轴的热流固耦合变形,可提高聚合物微型运动副微装配成型加工精度。  相似文献   

4.
针对模内微装配成型过程中,预成型微型件的热流固耦合变形难以精确控制的技术难题,研究提出了高速自润滑功能液膜辅助模内微装配成型精密控形创新工艺。结果表明,高速自润滑功能液膜辅助模内微装配成型能使预成型微型件的黏弹性热流固耦合变形精密控制在几十微米的精度内,实现了聚合物微细机械系统的模内微装配成型高精度微装配加工;通过高速自润滑功能液膜辅助模内微装配成型与传统模内微装配成型对比分析研究,揭示了高速自润滑功能液膜辅助模内微装配成型创新工艺精密控形的机理。  相似文献   

5.
微装配界面损伤变形是模内微装配成型先进技术工业化应用的主要瓶颈之一.针对此问题,研究建立了模内微装配界面的损伤变形仿真技术,研究表明,在配合界面迎流面棱边附近的近表面,易诱发凹陷垮塌和黏性拖曳飞边二种损伤变形,损伤变形与二次成型注射速度呈先降后增的抛物线型演化规律,且与热流固耦合垮塌驱动压力、黏弹性支撑垮塌驱动正应力和...  相似文献   

6.
由于聚合物模内组装成型的微型机械制造精度和组装配合精度主要受控于二次成型熔体充填流动与一次成型固体微型零件之间的流固耦合作用,因此通过有限元数值模拟,系统研究了二次成型熔体注射温度对流固耦合变形的影响,并揭示了其影响机理。研究结果表明,增加二次成型熔体的注射温度,可使二次成型熔体的充填流动与一次成型固体微型轴表面间的流固耦合作用效应减弱,并使一次成型固体微型轴整体温度场趋于不均匀,从而导致一次成型固体微型轴流固耦合弯曲应力和弯曲变形减小,而热应力和热变形增加。增加二次成型熔体的注射温度可减小流固耦合变形,但二次成型熔体的注射温度过大,又会导致一次成型固体微型轴表面融化,影响装配配合界面的成型质量。  相似文献   

7.
通过有限元数值模拟技术,系统研究了聚合物微型机械模内组装的二次成型聚合物熔体流变性能参数对一次成型固体微型零件的流固耦合作用效应和流固耦合变形的影响规律,并揭示了其产生机理。结果表明,随着二次成型熔体材料的零剪切黏度增加,使二次成型熔体的充填流动与一次成型固体微型轴表面间的流固耦合的作用效应增强,则微型轴外表面流固耦合作用压力增加,而微型轴整体温度场趋于均匀,从而导致一次成型固体微型轴流固耦合压力场的弯曲应力和弯曲变形增加,而温度场不均的热应力和热变形减小。  相似文献   

8.
提出了一种新型规模化高效低成本聚合物微型机械系统模内微组装成型加工技术,并针对其成型过程特点,建立了描述模内微组装成型过程成型热流固耦合变形机理的理论模型。通过有限元数值模拟,研究了模壁温度对模内微组装成型过程的影响规律。结果表明,模内微组装成型的微装配加工精度受控于热流固耦合压力场和不均匀温度场,且其热流固耦合变形随着模壁温度的升高而增大;减小模壁温度有利于提高其微装配加工精度。  相似文献   

9.
模内微装配成型二次充填熔体的冷却收缩自紧特性是保证界面可运动性能的关键影响因素,聚合物材料的应力松弛特性可以使微装配界面上的收缩自紧压力逐渐恢复。以线性黏弹性力学理论为基础,Prony级数形式描述黏弹性积分核函数,对模内组装成型低密度聚乙烯(LDPE)/不锈钢(STEEL)运动副界面收缩自紧应力松弛进行了研究。研究表明,以结构单元所采用的Prony级数形式适用于模拟运动副界面收缩自紧的应力松弛现象;同时经应力松弛后,运动副界面收缩自紧力呈现下降趋势,下降程度高达60%左右。  相似文献   

10.
周国发  郭勇  陈松 《中国塑料》2019,33(1):65-71
模内微装配成型微型机械转动副装配界面的冷却收缩自紧接触特性是创造运动副可运动性能的关键调控因素,如何准确预测和调控其自紧接触特性是模内微装配成型的技术关键。基于实验建立的热黏弹塑性本构关系,构建了成型过程中运动副微装配界面收缩自紧热黏弹塑性接触特性的模拟方法。结果表明,运动副微装配界面的最大装配过盈量、间隙量和驱动摩擦阻力扭矩与二次成型熔体注射温度呈正关联关系,降低二次成型注射温度,有利于提高模内微装配成型微型机械转动副装配界面的配合精度,并大幅减小其微型机械转动运动副获得可运动性能的最小驱动摩擦阻力扭矩;当二次成型注射温度由503 K降至463 K时,其驱动摩擦阻力扭矩由3.61 N·mm减至2.35 N·mm,降幅为34.9 %。  相似文献   

11.
基于Castro-Macosko 固化动力学模型,建立了描述塑封填充过程及其芯片热-流-固多场耦合翘曲变形形成过程的理论模型,并揭示了其变形机理。结果表明,芯片热流固耦合翘曲变形先随熔体充填流动时间的增加而快速增加,达到最大值之后逐渐减小,并趋于恒定;芯片热-流-固耦合综合翘曲变形主要由热-流-固耦合压力场诱发的翘曲变形和不均匀温度场诱发的热变形组成,芯片热流固耦合压力场诱发的变形为向外的翘曲变形,且正比于芯片上下表面熔体充填不平衡流动的流长差和充填流动速度差,并沿轴向呈先增后减的对称抛物线分布,热-流-固耦合压力场诱发的翘曲变形远大于不均匀温度场诱发的热变形,芯片热-流-固耦合综合翘曲变形主要由热-流-固耦合压力场诱发的变形控制。  相似文献   

12.
细胞皿微型塑件注射成型工艺   总被引:1,自引:0,他引:1       下载免费PDF全文
徐斌  王敏杰  于同敏  徐华 《化工学报》2010,61(11):2999-3005
微尺度聚合物熔体充模流动过程较复杂,涉及影响因素较多,针对微尺度聚合物熔体的充模流动特点,以细胞皿塑件为研究对象,采用变模温、抽真空排气及微细电火花加工技术,设计制造了微注塑模具。基于Taguchi实验设计方法,以高密度聚乙烯(HDPE)和聚甲醛(POM)两种材料研究了工艺参数及其交互作用对微塑件成型质量的影响规律。实验结果表明,对于HDPE材料,模具温度对填充率的影响最大,保压压力次之,熔体温度和保压时间影响相对较小;对于POM材料,熔体温度对填充率的影响最大,保压压力次之,模具温度和保压时间影响相对较小。  相似文献   

13.
The injection mold faces a number of different loads during the injection molding process for plastic parts. The effect on the mechanical behavior of the mold, inserts, and adjacent processes can be complex and may cause bad final parts. By using an integrative simulation approach it is possible to take the process influence into account when calculating the solid body behavior of the mold in a structural simulation. A newly developed approach at IKV uses the advantages of the integrative approach and extends it by an automatic back coupling of deformation results during the filling simulation. This way the interaction of the melt flow and the deformation of inserts or mold components can be considered during the filling phase.  相似文献   

14.
Analysis of the injection-molding process based on Leonov viscoelastic fluid model has been employed to study the effects of process conditions on the residual stress and birefringence development in injection-molded parts during the entire molding process. An integrated formulation was derived and numerically implemented to solve the nonisothermal, compressible, and viscoelastic nature of polymer melt flow. Simulations under process conditions of different melt temperatures, mold temperatures, filling speeds, and packing pressures are performed to predict the birefringence variation in both gapwise and planar direction. It has been found that melt temperature and the associated frozen layer thickness are the dominant factors that determine the birefringence development within the molded part. For a higher mold temperature, melt temperature, and injection speed, the averaged birefringence along gapwise direction is lower. The birefringence also increases significantly with the increased packing pressure especially along gate area. The simulated results show good consistency with those measured experimentally. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Complex automotive parts were produced by film insert molding and the ejected parts were annealed to investigate the viscoelastic deformation. Warpage of the part was predicted by numerical simulation of mold filling, packing, and cooling stages with non‐isothermal three‐dimensional flow analysis. The flow analysis results were transported to a finite element stress analysis program and the stress analysis was performed by using time‐temperature superposition principle to investigate viscoelastic deformation. Predicted residual stresses, viscoelastic deformation, and warpage showed good agreement with experimental results. Thermal shrinkage of the inserted film and relaxation of the residual stress affected the viscoelastic deformation of the part significantly during annealing. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
The filling process of a micro‐cavity was analyzed by modeling the compressible filling stage by using pressure‐dependent viscosity and adjusted heat transfer coefficients. Experimental filling studies were carried out at the same time on an accurately controlled microinjection molding machine. On the basis of the relationship between the injection pressure and the filling degree, essential factors for the quality of the simulation can be identified. It can be shown that the flow behavior of the melt in a micro‐cavity with a high aspect ratio is extremely dependent on the melt compressibility in the injection cylinder. This phenomenon needs to be considered in the simulation to predict an accurate flow rate. The heat transfer coefficient between the melt and the mold wall that was determined by the reverse engineering varies significantly even during the filling stage. With increasing injection speed and increasing cavity thickness, the heat transfer coefficient decreases. It is believed that the level of the cavity pressure is responsible for the resulting heat transfer between the polymer and the mold. A pressure‐dependent model for the heat transfer coefficient would be able to significantly improve the quality of the process simulation. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
Means of reducing the flow-induced residual stresses in injection molded parts through optimization of the thermal history of the process are presented. An approach through the use of a passive insulation layer with low thermal inertia on the cavity surface was investigated. The passive insulation layer prevents the polymer melt from freezing during mold filling and allows the flow-induced stresses to relax after the filling. The criteria for the optimal thermal properties and the required thickness of the layer are presented. A numerical simulation model of non-isothermal filling and cooling of viscoelastic materials was also used to understand the molding process and to evaluate this approach. This model predicts the stress development and relaxation in the molding cycle. Both simulation and experimental results show that the final stresses in the molded parts can be reduced significantly with the use of an insulation layer. This technique can also be applied to other molding or forming processes in order to decouple the material flow and cooling process for minimum residual stresses in the molded parts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号