首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
以红花籽为原料,在胰酶的最适p H条件下,采用中心组合设计对胰酶用量及料液比、酶解温度和时间进行优化,确定水酶法提取红花籽油最佳工艺为:酶添加量为305u/g,料液比1∶6,提取温度45℃,提取时间为3h,红花籽油的最大提取率约为65.14%。气相色谱测定结果表明:水酶法得到的油脂由11种脂肪酸组成,其总含量高达90%以上,其中饱和脂肪酸以棕榈酸为主,不饱和脂肪酸以亚油酸和油酸为主,其中亚油酸含量最多,相对含量约为79%。  相似文献   

2.
为了获得红瓜子仁水酶法提油的最佳工艺条件,了解红瓜子仁油贮藏过程中挥发性成分的变化,以红瓜子仁油提取率为指标,采用单因素试验和正交试验对红瓜子仁油的水酶法提取工艺条件进行优化,并采用HS-GC-IMS技术对贮藏0 d和1年(4℃冰箱中存放)的红瓜子仁油的挥发性成分进行分析。结果表明:水酶法提取红瓜子仁油最佳工艺条件为料液比1∶5、碱性蛋白酶添加量5%、酶解温度50 ℃、酶解时间3 h、pH 10,在此条件下红瓜子仁油提取率为75.68%;红瓜子仁油中主要的挥发性成分有25种,不同贮藏时间下红瓜子仁油中挥发性成分的含量存在差异,其中3-甲基-1-丁醇和3-羟基-2-丁酮可初步确定为新鲜红瓜子仁油挥发性成分的标志物。研究结果说明水酶法提取红瓜子仁油可以获得较高的油脂提取率,贮藏时间影响红瓜子仁油中挥发性成分的组成及含量。  相似文献   

3.
响应面试验优化红花籽油水酶法提取工艺   总被引:1,自引:0,他引:1  
李晓  李春阳  曾晓雄  王帆 《食品科学》2017,38(22):231-238
通过二水平因子分析设计和响应面试验,优化水酶法提取红花籽油工艺。以红花籽油提取率为指标,对酶的种类及添加比例、料液比、总加酶量、酶解时间、酶解温度、酶解p H值进行研究。结果表明:在木聚糖酶UTC-X50、果胶酶NCB3/ZG-040和碱性蛋白酶NCB3/ZG-002比例1∶2∶3(酶活比),总加酶量197.36 U/g,料液比1∶4(g/mL)条件下,先用细胞壁多糖酶(木聚糖酶、果胶酶)在p H 4.2、50℃酶解131 min,再用碱性蛋白酶在p H 9.8、40℃酶解60 min,此工艺条件下红花籽油提取率最高,为84.68%;采用气相色谱法分析脂肪酸组分,发现红花籽油中不饱和脂肪酸相对含量高达91.18%,其中亚油酸相对含量为78.27%,油酸相对含量为12.61%,亚麻酸相对含量为0.10%。  相似文献   

4.
以丝瓜籽为原料,研究水酶法提取丝瓜籽油的最佳工艺并对其脂肪酸组成、理化特性进行分析。经单因素试验与混料试验,确定了水酶法提取丝瓜籽油的分步酶解条件为:首先添加2.0%的复合酶(其中维素酶、果胶酶、半纤维素酶的配比为0.663∶0.237∶0.100),在pH 4.8、温度45℃、液料比7∶1条件下,酶解2.5 h;再加入1.0%的中性蛋白酶,在pH 6.8、温度45℃条件下,酶解1.5 h,最终丝瓜籽油提取率达到93.85%。该油富含不饱和脂肪酸,其酸价、过氧化值等指标符合国家食用油卫生标准。水酶法提取丝瓜籽油是一种有效的油脂提取方法。  相似文献   

5.
杨端 《中国油脂》2020,45(7):31-34
以奇亚籽为原料,采用水酶法提取奇亚籽油。在单因素实验的基础上,采用响应面法对水酶法提取奇亚籽油的工艺条件进行优化。结果表明,水酶法提取奇亚籽油的最佳工艺条件为:碱性蛋白酶作为酶解用酶,酶解温度45℃,液料比8. 47∶1,pH 10,酶添加量5. 17%,酶解时间2. 16 h。在最佳条件下,奇亚籽油提取率为89. 53%。  相似文献   

6.
《粮食与油脂》2015,(9):27-30
该文采用桂花为原料,研究了水酶法提取桂花油及其微胶囊化工艺。通过响应面分析法和正交试验,获得水酶法提取桂花油的最佳工艺及其微胶囊化最佳工艺。结果表明;水酶法提取桂花油最佳工艺为碱性蛋白酶添加量为1.0%,料液比为1∶13.5,酶解时间为3.6 h,酶解温度为43.1℃。微胶囊化最佳工艺条件为壁材浓度12%,芯壁质量比1∶3,均质压力25 MPa,进出风温度为160/85℃。  相似文献   

7.
何林枫  王静  李利钦  肖迪  李尚泽  胡渝 《食品与机械》2023,39(3):188-193,216
目的:优化水酶法提取樱桃籽油工艺,提高樱桃籽利用率。方法:在单因素试验基础上,运用混料设计对混合酶的混合比例进行优化,以确定最佳提取工艺条件,再对樱桃籽油的理化性质进行检测。结果:混合酶法提取樱桃籽油的最优酶解条件为:混合酶(m维素酶∶m果胶酶∶m酸性蛋白酶为0.67∶0.10∶0.23)添加量2.0%,液料比(V蒸馏水∶m樱桃籽粉)10∶1 (mL/g),酶解温度45℃,pH 4.0,酶解4.0 h,樱桃籽油回收率达到93.18%,实际提取率为28.66%。所得樱桃籽油符合食用油安全标准。结论:混料设计辅助水酶法提取樱桃籽油的工艺具有可行性。  相似文献   

8.
超声波促进水酶法提取红花籽油工艺研究   总被引:3,自引:0,他引:3  
通过超声波促进水酶法提取红花籽油,研究超声波功率、料液比、纤维素酶添加量、胰蛋白酶添加量、纤维素酶酶解时间及胰蛋白酶酶解时间对红花籽油得率影响。经单因素试验和正交试验优化,得出最优提取工艺为:料液比1∶6、超声波功率120 W、纤维素酶添加量150 U/g、胰蛋白酶添加量100 U/g、纤维素酶酶解时间5 h、胰蛋白酶酶解时间3 h;在此条件下,红花籽油得率可达86.74%。  相似文献   

9.
以临安山核桃仁为原料,结合超声波辅助,研究水酶法提取山核桃油的加工工艺。结果表明,复合酶酶解制取山核桃油的最佳工艺条件:纤维素酶、半纤维素酶、果胶酶、中性蛋白酶4种酶配比为2∶5∶2∶4,料水比1∶5,加酶量1.6%,酶解温度45℃,酶解pH值为7.0,酶反应时间3h。在最佳工艺条件下,山核桃油得率为54.23%。  相似文献   

10.
水酶法同时提取油茶籽油及蛋白研究   总被引:2,自引:0,他引:2  
《粮食与油脂》2015,(9):58-61
采用水酶法从油茶籽仁中同时提取油与蛋白。经筛选,使用碱性蛋白酶水解油茶籽仁水液,并对酶解工艺条件进行优化。通过单因素实验及正交试验,确定水酶法提取油茶籽油和蛋白的最佳工艺参数为料液比1∶5、蛋白酶用量1.5%、酶解p H 8,酶解温度60℃、酶解时间4 h。在此最佳条件下进行实验验证,油茶籽油得率为74.61%,油茶籽蛋白得率为82.28%。  相似文献   

11.
以内蒙古胡麻籽为原料,采用水酶法提取胡麻籽油。在单因素试验的基础上,采用响应面分析优化工艺条件,并分析了胡麻籽油的品质。试验得到胡麻籽油的最佳提取工艺条件为料液比1∶14.34(g/mL)、pH 4.9、酶解温度48.9℃、酶解时间3 h、加酶量2.16%,在此条件下胡麻籽油的提取率为64.0%。经测定,水酶法提取的胡麻籽油气味、滋味纯正,水分及挥发物含量为0.132%,酸价(KOH)为1.21 mg/g。  相似文献   

12.
水酶法-冻融耦合技术提取油莎豆油工艺优化   总被引:1,自引:0,他引:1  
为提高油莎豆油提取率和油品品质,以油莎豆为原料,以油莎豆油提取率及理化性质为指标,借助气相色谱/质谱联用仪(GC-MS),比较分析溶剂法、水酶法、水酶法-冻融耦合技术3种提油方法的效果。并通过单因素试验和正交试验,优化了水酶法-冻融耦合技术提取油莎豆油的工艺。结果表明,采用碱性蛋白酶和纤维素酶复合酶,水酶法提取的最佳工艺参数为:料液比1∶7(g∶mL),酶添加量2.5%,酶解温度70℃,酶解时间6 h,然后经-30℃冷冻、室温融解、4 000 r/min离心分离20 min,在此提取条件下,油莎豆油提油率达74.92%,比单纯水酶法高,而且油脂品质较优。  相似文献   

13.
通过响应面法分析和全因子试验设计,探究单一酶和复合酶用于水酶法提取杨梅核仁油的效果,优选确定水酶法提取杨梅核仁油的酶制剂为纤维素酶。采用正交试验对酶法水解提取杨梅核仁油的工艺进行优化,获得其最佳工艺条件为纤维素酶添加量2%、酶解温度50 ℃、pH 4.8、酶解时间2.5 h、料液比1∶4(g/mL),该条件下的得油率为33.95%,提取率为50.67%。采用气相色谱法对杨梅核仁油的脂肪酸组成进行了分析,结果表明:木洞杨梅核仁油富含不饱和脂肪酸,高达87.22%,其中油酸含量达50.31%,亚油酸含量达到36.64%,亚麻酸含量为0.27%。  相似文献   

14.
以辣木籽为原料,采用水酶法提取辣木籽油,并对其体外抗氧化活性进行研究。以辣木籽油提油率为指标,确定复合酶的组合及比例(蛋白酶∶纤维素酶=2∶1),在单因素试验基础上,采用正交试验优化提取工艺。结果表明水酶法提取辣木籽油的最佳工艺为料液比1∶4 (g/mL)、pH 4、酶添加量3%、酶解温度55℃,在此条件下,辣木籽油的提取率为61.35%。水酶法提取的辣木籽油具有较强的抗氧化活性。5 mg/mL辣木籽油对羟自由基(·OH)和DPPH·清除率分别为80.30%和62.67%。  相似文献   

15.
以挤压膨化过的转基因大豆为原料,大豆油的提取率为指标,在单因素试验的基础上,使用微滴式数字PCR仪对水酶法提取转基因大豆油的工艺过程中内、外源基因的分布进行研究,探索转基因大豆内、外源基因的降解规律。通过单因素试验确定水酶法提取转基因大豆油的最佳工艺条件为:料液比1∶6(g/mL),碱性蛋白酶加酶量1.8%,酶解温度35℃,酶解时间4.0 h,酶解pH 9.0,在此条件下,通过水酶法得到的水相中转基因大豆的内源基因占65.0652%,外源基因占81.742 1%;固相中内源基因占16.892 5%,外源基因占11.284 2%;油相中内源基因占0.000 2%,外源基因占0.000 4%。  相似文献   

16.
为探究超声辅助双酶法水解牛骨蛋白的最佳工艺,该试验在单因素试验的基础上,根据响应面分析法确定超声辅助双酶水解的最佳条件,并根据顶空固相微萃取-气相色谱-质谱法(headspace-solid phase micro extraction-gas chromatography/mass spectrometry,HS-SPME-GC/MS)对超声辅助双酶酶解后样品的挥发性成分进行分析。结果表明,最佳酶解条件为料液比1∶8(g/mL)、超声时间60 min、超声功率450 W、超声温度51℃,该条件下水解度为20.73%,与预测值接近。样品中检测出的挥发性风味成分包括醛类5种、醇类15种、酮类4种、烃类3种、酸类6种和杂环化合物5种,共38种,含量分别为醛类164.52μg/kg、醇类445.08μg/kg、酮类123.56μg/kg、烃类39.6μg/kg、酸类20.7μg/kg和杂环化合物32.25μg/kg,其中,醛类物质和醇类物质对样品的风味贡献最明显。  相似文献   

17.
以梅花鹿尾为研究对象,采用正交试验优化超声水提蛋白工艺及水酶法提取多肽工艺,比较两种最佳工艺所得物对小鼠睾丸间质细胞(TM_3)增殖活性的影响。结果表明,超声水提蛋白工艺最佳条件为料液比1∶5 g/mL、超声功率200 W、提取时间1 h、提取温度40℃,在此条件下蛋白含量为60.72%±0.56%;水酶法提取多肽工艺中最佳蛋白酶为胰蛋白酶,酶解最佳条件为pH8、加酶量1500 U/g、酶解时间4 h、提取温度50℃,在此条件下水解度为22.85%±0.35%。水酶法提取鹿尾多肽对小鼠睾丸间质细胞(TM_3)增殖活性优于超声水提鹿尾蛋白。  相似文献   

18.
薄壳山核桃油水酶法提取工艺优化及品质分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为优化薄壳山核桃油水酶法提取工艺,以薄壳山核桃仁为原料,采用水酶法提取油脂,筛选出水酶法提油的适宜酶制剂。在单因素试验基础上,采用正交试验研究料液比、加酶量、酶解温度、酶解时间和酶解pH对薄壳山核桃油提取率的影响,并对比了水酶法、压榨法和溶剂浸提法3种方法制取的薄壳山核桃油的品质。结果表明:蛋白酶为适宜的酶制剂;水酶法提取薄壳山核桃油的最佳工艺条件为料液比1∶ 4、加酶量2.5%、酶解温度55 ℃、酶解时间2.0 h、酶解pH 8,在此条件下薄壳山核桃油提取率为68.44%;薄壳山核桃油中含有7种主要脂肪酸,分别是棕榈酸、硬脂酸、油酸、亚油酸、α-亚麻酸、花生酸和顺-11-二十碳烯酸,不饱和脂肪酸含量高达90%以上,且以油酸和亚油酸为主,油酸含量高达70%以上,亚油酸含量在15%以上。3种制油方法中,水酶法制取的薄壳山核桃油具有较高的油酸、生育酚、总酚、β-谷甾醇和角鲨烯含量,油脂品质最好。水酶法是一种较为理想的核桃油提取方法。  相似文献   

19.
为促进栀子的开发利用,以栀子成熟果实为原料,采用水酶法提取栀子油。采用单因素实验研究酶种类、加酶量、酶解pH、酶解温度、液料比、酶解时间对栀子油得率的影响,在此基础上采用均匀设计实验进行工艺条件优化,并对各种酶提取的栀子油进行脂肪酸组成分析。结果表明:水酶法提取栀子油的最佳工艺条件为采用中性蛋白酶、加酶量0.7%、液料比3∶1、酶解pH 7、酶解温度60℃、酶解时间7 h,在此条件下栀子油得率为7.27%,与空白组(3.34%)相比提高了117.66%;栀子油中亚油酸含量最高,超过56%,不饱和脂肪酸含量为80%左右。不同酶提取栀子油的脂肪酸组成及含量没有显著差异。  相似文献   

20.
采用水酶法从牡丹籽中提取牡丹籽油,并优化了提取工艺参数。试验以牡丹籽油的提取率为指标,采用单因素试验和正交试验法,考察酶解温度、酶解p H值、加酶量3个因素对牡丹籽油提取率的影响,优选出最佳提取条件,并通过气相色谱-质谱(gas chromatography-mass spectrometry,GC-MS)对所提牡丹籽油的脂肪酸组成进行分析。结果表明,优选出的最佳提取工艺为:酶解温度50℃、酶解p H 7.5、加酶量2.5%,该条件下油脂提取率达42.08%。所提油脂脂肪酸主要含有α-亚麻酸、亚油酸、油酸、棕榈酸、硬脂酸5种脂肪酸,其中不饱和脂肪酸含量高达92.23%。水酶法提取牡丹籽油条件温和,可减少提取过程中不饱和脂肪酸的损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号