首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
《铸造技术》2015,(5):1241-1244
以某钢厂矩形坯连铸结晶器为原型,建立相似比为1︰1的水力学模型,研究拉速及浸入式水口的出口面积比、水口倾角、水口浸入深度等工艺参数对不同断面矩形坯结晶器内表面流速的影响。结果表明:应当综合分析水口结构参数以及工艺参数对结晶器内表面流速的影响,另外矩形坯断面尺寸也会对表面流速有一定影响。  相似文献   

2.
针对不锈钢板坯轧材经常出现的夹渣和表面翘皮现象,以实际生产条件为背景,对其连铸结晶器内钢液流动行为与水口工艺的相关性进行了试验研究。基于相似原理建立了相似比0.65∶1的物理模型,对不同浸入式水口结构和浇注工艺参数下的结晶器液面状态进行了流体动力学行为评价与比较优化。其中,主要研究了拉速、浸入深度、水口倾孔倾角(4°、8°、15°)、侧孔形状(矩形、倒梯形)等对结晶器内液面波动和表面流速的影响。结果表明,连铸拉速和水口浸入深度对液面波动的影响比水口结构显著;水口上倾角由4°增大到8°、15°,结晶器表面流速有减小趋势,但因流股冲击深度减小,导致在结晶器弯月面处的波高增大。综合表明,针对实际连铸拉速1.10 m/min的需要,其适宜的水口结构为倒梯形水口侧孔、上倾8°,其在水口浸入深度110~120 mm范围内,液面平均波高为1.1~1.2 mm,平均表面流速约为0.103 m/s。同时用数值模拟方法比较了优化方案和原方案,同样表明优化方案液面较平稳,剪切卷渣概率较低。  相似文献   

3.
当FTSC薄板坯连铸机生产拉速提高到4~6 m/min时,浸入式水口通钢量增加,结晶器内流场扰动加剧,卷渣率提高,对生产顺行及铸坯质量都将产生重大影响。因此,为了解结晶器液面流场,根据实际生产情况,制作了1∶1的结晶器水物理模型,并通过Fluent软件对结晶器液面流场进行了数值模拟,研究了水口浸入深度及拉速对液面流场的影响。结果表明,在水模型物理试验中,水口浸入深度恒定为130 mm时,拉速在4~6 m/min范围内,结晶器表面流速随着拉速的提高而增大,其最大值范围为0.401~0.693 m/s;在6 m/min恒定拉速下,水口浸入深度在130~190 mm范围内,结晶器表面流速随着水口浸入深度的增加而减小,其最大值范围为0.503~0.690 m/s。在数值模拟中,水口浸入深度恒定为130 mm时,拉速在4~6 m/min范围内,结晶器表面流速随着拉速的提高而增大,其最大值范围为0.50~0.75 m/s;在6 m/min恒定拉速下,水口浸入深度在130~190 mm范围内,结晶器表面流速随着水口深入深度的增加而减小,其最大值范围为0.65~0.75 m/s。结晶器表面流速随着距水口中心距离的增大有先增加后减小的规律。  相似文献   

4.
以结晶器表面的钢液流速和结晶器内的射流冲击深度作为参考指标,基于FLUENT对邯钢宽厚板坯连铸结晶器内流场进行数值模拟,研究该连铸机所用的A水口的性能及在该水口作用下的拉速、水口浸入深度对结晶器内流场的影响。结果表明:在A水口的作用下结晶器的表面流速大,射流冲击深度则较小,有较大的卷渣可能性;最大结晶器表面流速随着拉速的增大而逐渐增大,射流冲击深度则逐渐减小;结晶器表面流速随着水口浸入深度的增加而减小,射流冲击深度则增大;根据邯钢宽厚板坯连铸机的实际生产条件,在拉速较大时,应将A水口替换为平行水口;在使用A水口时,在适当降低拉速的同时,水口浸入深度也应适当增大。  相似文献   

5.
针对中小断面方坯侧分水口浇铸技术,以实际180 mm×240 mm断面方坯连铸结晶器为原型,基于相似原理,采用1:1的物理模型,比较了直通型和侧分旋流型水口浇注时在不同拉速和浸入深度下的结晶器内自由表面流速和渣层状态。结果表明:相同的浸入深度和拉速下,旋流型水口浇注时结晶器内各测点表面流速比直通型水口大;在实验条件下,直通型水口表面流速为0.010~0.023 m/s,旋流型水口为0.010~0.055 m/s,拉速和浸入深度对旋流型水口表面流速的影响较直通型水口显著;此外,采用旋流水口时结晶器的渣层波动要比采用直通型水口时频繁,拉速1.0 m/min、浸入深度120 mm时,其渣层波动适宜,钢渣界面活跃且无卷渣和裸钢现象发生,此时两测点的表面流速分别为0.028和0.032 m/s,是较适宜的工艺条件。  相似文献   

6.
通过水模型研究方法,对某钢厂200mm×1800mm连铸机结晶器内流体的流动行为进行了研究,在此基础上对水口的结构参数和工艺参数进行了优化。研究结果表明:①拉坯速度、水口底部形式、水口出口形状、出口角度、出口面积比以及浸入深度等参数对结晶器内流场有重要影响,在对其进行优化研究时应综合考虑;②在试验条件下,结晶器优选出的新型浸入式水口的最佳结构参数为:水口倾角15°,出口面积比2.0,出口形状为跑道形,底部形状为平底,结合现场生产实际建议浸入深度为125mm,拉速为1.45m/min。  相似文献   

7.
通过建立1[∶]1异型坯结晶器物理模型,采用PIV粒子测速技术,研究断面尺寸为767.3 mm×383.1 mm×103.2 mm异型坯结晶器不同工艺参数条件和不同水口结构对结晶器内流场的影响。PIV实验结果表明,减小拉速和增大水口底部内径可以有效地减小冲击深度,结晶器深度860 mm处水口中心最大流股速度分别下降了27.96%和41.46%;增加拉速和减小水口浸入深度可以提高流场下旋涡上顶点位置。通过减小拉速和浸入深度,增大水口底部内径可以改善结晶器内流场。  相似文献   

8.
《铸造技术》2017,(8):1944-1948
对断面180 mm×755 mm的板坯进行1∶1物理模拟研究,以及建立fluent数学模型的方法,对结晶器钢液的表面流速、流场等进行分析研究。结果表明:相同拉速下,当倾角为15°、20°、25°时,倾角每增加5°,平均表面流速下降40%左右;相同水口倾角下,当拉速为0.8、0.9、1.0、1.1 m/min时,拉速每增加0.1 m/min,平均表面流速上升30%左右;相同拉速下,当水口浸入深度为100、120、135、150 mm时,浸入深度增加10 mm,平均表面流速上升40%左右。  相似文献   

9.
采用数值模拟的方法,建立了描述某厂结晶器内钢液流动的数学模型;用有限体积法求解,研究了结晶器内的钢液流动行为,详细分析了结晶器浸入式水口(SEN)插入深度、侧孔倾角和拉速对结晶器内钢液流场的影响.得出了适合该厂连铸工艺条件的浸入式水口形式和拉坯速度,即水口合理的出口倾角应为向下15°左右;在水口结构一定条件下,水口插入深度140~170mm比较适宜;合理的拉速应控制在1.4~2.0m/min.  相似文献   

10.
《铸造技术》2017,(8):1918-1922
以某钢厂生产断面为165 mm×565 mm板坯连铸结晶器和水口为原型,采用1∶1的物理模拟,制作结晶器和浸入式水口模型。对结晶器流场进行水模拟试验。通过改变不同参数,研究不同因素对结晶器流场的影响,以便得到更适合现场生产的工艺参数。实验结果表明,生产断面为165 mm×565 mm板坯连铸结晶器浸入式水口倾角20°,拉速的调节范围在1.0~1.1 m/min,结晶器水口浸入深度在130~140 mm范围。更加有利于结晶器的顺利运行,提高钢坯质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号