首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
采用电子背向散射衍射技术研究了镍基高温合金冷变形和再结晶退火过程中的组织演变、晶界特征分布、应变分布及织构演变规律。结果表明,当冷变形量较小(ε≤45%)时,晶粒沿着轧制方向被拉长,呈扁平状于基体中均匀分布,应力主要集中在晶界和孪晶界(TB)附近,大角度晶界(HAGBs)和TBs逐渐向亚晶界(Sub-GBs)和小角度晶界(LAGBs)转变。同时,出现Goss织构 {110}<001>、Brass-R织构{111}<112>、Twinned-Copper织构{552}<115>和Copper织构{112}<111>。当轧制压下量超过70%时,晶粒形状逐渐从扁平变为纤维状,晶粒的变形均匀性逐渐变好,应变分布变得均匀,LAGBs开始占主导地位。同时,织构类型保持不变,但织构强度增加。在1120 ℃退火15 min后,孪晶的长度分数随着轧制压下量的增加而增加。同时,变形织构转变为再结晶织构,织构类型增加,但织构强度减弱。此外,当退火孪晶的比例增加时,Copper织构{112}<111>不断向Twinned-Copper织构{552}<115>转变,并且经过30%~80%轧制变形的试样产生织构{124}<211>。  相似文献   

2.
CR340轧制差厚板(TRB)在轧制过程中,其不同的厚度区形成了不同的织构,分别是薄区的{111}<01>和{141}<22>织构,过渡区的{225}<10>和{211}<01>织构,厚区的{876}<5>和{411}<01>织构。根据EBSD测试结果,建立了各厚度区的多晶体塑性有限元模型,研究了单向拉伸时各厚度区的晶粒织构对滑移系开动情况和应力应变分布的影响规律。结果表明,薄区的{111}<01>织构和厚区的{876}<5>织构有利于滑移系的开动,开动的数量分别为9和8组,这使得等厚区在变形中的应力集中弱化,具有良好的塑性变形行为。而过渡区的{225}<10>、{211}<01>织构的晶粒滑移系开动较少,开动的数量分别为6和7组,导致应力集中,其塑性变形行为较差。差厚板各厚度区织构的差异导致其塑性变形呈现明显的不均匀性,其断裂位置发生在单轴拉伸时塑性变形较差的过渡区。  相似文献   

3.
孙中源  梁宇  明正兴 《铸造》2012,61(8):873-876
研究了低能量脉冲电流对7075铝合金的铸态组织的影响,并探究了Al-5Ti-1B变质剂和脉冲电流共同作用下对铝合金晶粒的作用效果。结果表明,脉冲电流孕育处理能有效减少铸造组织的二次枝晶的数量;Al-5Ti-1B能明显地细化组织晶粒;而7075铝合金熔体在凝固阶段持续通入脉冲电流后,铸造组织形貌明显改善,得到较为均匀的等轴晶和近球形晶粒。  相似文献   

4.
采用连续铸轧方法制备6 mm厚、牌号为1235的铝合金,利用高分辨透射电镜(TEM)、扫描电镜(SEM)和背散射电子衍射技术(EBSD)对铸轧态(TRC)样品的微观结构进行表征。结果表明:铸轧态的1235铝合金具有快速凝固组织,即晶粒尺寸在30~100 nm之间的纳米多晶组织,有沿(121)晶面滑移的滑移带和高密度位错线等深度塑性变形组织,还有沿(100)晶面生长的再结晶组织;Fe和Si等掺杂元素固溶在基体Al中;在铸轧态下晶粒直径几乎分布在20~50μm之间,且产生的较强织构有{210}122、{122}210和{210}125等,较弱的织构有铜织构{112}111和{112}110。  相似文献   

5.
胡静  林栋樑  王燕 《金属学报》2009,45(6):652-656
采用EBSD分析了1075℃和初始应变速率为8.75×10-4 s-1条件下大晶粒NiAl合金高温塑性变形过程中的组织演变 与重位点阵 (CSL) 特征晶界分布. 变形前大晶粒NiAl合金以大角度晶界为主, 小角度晶界比例极低. 在高温塑性变形过程中, 取向差5°以下的小角度晶界不断产生. 随变形量的增大, 新形成的小角度晶界取向差增加, 转变为取向差较大的6°---15°小角度晶界, 进而转变为15°以上的大角度晶界. 小角度晶界的产生速率与转变为大角度晶界的速率趋向动态平衡. 小角度晶界向较大角度晶界不断转变导致晶粒显著细化. CSL特征晶界分析表明, 大晶粒NiAl合金高温塑性变形过程中, CSL晶界分布发生改变, 将对合金室温力学性能产生影响.  相似文献   

6.
研究了常规铸轧过程中施加20、50和150Hz频率,电流强度为400A的脉冲电流对Al-6Zn-3Mg-2Cu合金铸轧板的组织及力学性能的影响。结果表明,经20Hz的脉冲电流处理后,Al-Zn-Mg-Cu合金铸轧板偏析情况大为改善,微观组织显著细化;150Hz脉冲电流对铸轧板的组织影响不大;铝合金中τ相广泛分布,呈网状或岛状;同时,经20Hz脉冲电流处理的铸轧板抗拉强度可达320MPa,是常规铸轧板强度的1.3倍;样品具有脆性断裂特征,脉冲处理后韧性有所提高。  相似文献   

7.
为了研究双相高熵合金(HEA)在高温变形过程中的微观组织演变,在900至1050 ℃的温度下进行了不同应变速率的压缩试验。选择了4种典型的流动曲线,并对相应的微观组织进行了分析,以研究双相HEA的动态再结晶(DRX)和织构演变。结果表明,在应变速率为0.1和0.01 s-1时,变形试样的流动曲线完全不同。力学流动曲线的差异与DRX和织构演化过程有关。在1050 ℃和0.1 s-1下压缩后,获得了结合<110>和<100>的双组分组织结构,这是因为高温下扩散控制的溶质阻力占主导地位。此外,bcc相的影响依赖于界面边界和颗粒周围的应变不均匀性,因为没有发生相变,大部分应变由fcc相容纳。  相似文献   

8.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱仪和电子拉伸试验机等设备研究了Nd对Mg-13Gd-0.5Zr合金组织和力学性能的影响,结合错配度理论、位错密度的变化规律讨论了合金晶粒细化的机理,并从细晶强化和析出强化等方面阐述了合金强化机制。研究发现Mg-13Gd-0.5Zr合金的组成相主要有α-Mg、Mg<sub>5</sub>Gd,Nd的加入在合金中形成了新相Mg<sub>41</sub>Nd<sub>5</sub>,并细化了合金晶粒。Nd的加入显著提高了Mg-13Gd-0.5Zr合金的室温和高温力学性能,当Nd的添加量为2%时,合金在室温和高温下的力学性能达到最大值279(室温)、319 MPa(250 ℃),合金力学性能的提高主要归因于Mg<sub>5</sub>Gd和Mg<sub>41</sub>Nd<sub>5</sub>相的析出强化和细晶强化的双重效果。Mg-13Gd-2Nd-0.5Zr合金在不同温度下的断裂方式主要以脆性断裂为主,随着拉伸温度的升高并由脆性断裂向韧性断裂转变。  相似文献   

9.
在不改变GH3625合金化学成分的前提下,通过晶界工程(GBE)优化和调控合金组织,从而改善合金的高温组织稳定性以及使用可靠性。采用电子背散射(EBSD)和取向成像显微技术(OIM)研究了形变热处理对GH3625合金晶界特征分布(GBCD)的影响。结果表明,GH3625合金晶界特征分布的优化主要是通过再结晶过程中形成的Σ3<sub>n</sub>晶界来实现的,同时主要受冷变形量和退火条件的影响;GH3625合金中低ΣCSL晶界比例随着冷变形量的增加而减小,随着退火温度的升高而增加,当合金在ε=35 %,退火温度为1120 ℃保温15 min时,低ΣCSL晶界比例可提高到63.16 %以上(Palumbo-Aust标准);同时形成大尺寸的“互有Σ3<sub>n</sub>的取向关系晶粒的团簇”此外,GH3625合金中出现了大尺寸的晶粒团簇,在晶粒团簇内的晶粒之间具有Σ3<sub>n</sub>的取向关系;晶粒团簇尺寸和内含Σ3<sub>n</sub>晶界的数量随着冷变形量的增加而减小,随着退火温度的升高而增加。  相似文献   

10.
采用OM、SEM、拉伸试验和硬度测试等手段,研究双辊铸轧7075铝合金薄板过程中浇注温度和铸轧速度对7075铝合金铸轧板的显微组织及力学性能的影响。结果表明,当浇注温度为993 K时,随铸轧速度加快,铸轧板的成型性越差;当浇注温度为963~973 K,铸轧速度为8.5 m/min时,是较理想的双辊铸轧工艺参数。铸轧板的显微组织是由边部枝晶和芯部等轴晶组成;7075铸轧铝合金沿铸轧90°方向综合力学性能最好,拉伸应力可达290 MPa;铸轧板硬度从表层到芯部依次下降。  相似文献   

11.
《Acta Materialia》2002,50(17):4419-4430
Commercial 7075Al rolled plates were subjected to friction stir processing (FSP) with different processing parameters, resulting in two fine-grained 7075Al alloys with a grain size of 3.8 and 7.5 μm. Heat treatment at 490 °C for 1 h showed that the fine grain microstructures were stable at high temperatures. Superplastic investigations in the temperature range of 420–530 °C and strain rate range of 1×10−3–1×10−1 s−1 demonstrated that a decrease in grain size resulted in significantly enhanced superplasticity and a shift to higher optimum strain rate and lower optimum deformation temperature. For the 3.8 μm 7075Al alloy, superplastic elongations of >1250% were obtained at 480 °C in the strain rate range of 3×10−3–3×10−2 s−1, whereas the 7.5 μm 7075Al alloy exhibited a maximum ductility of 1042% at 500 °C and 3×10−3 s−1. The analyses of the superplastic data for the two alloys revealed a stress exponent of 2, an inverse grain size dependence of 2, and an activation energy close to that for grain boundary self-diffusion. This indicates that grain boundary sliding is the main deformation mechanism for the FSP 7075Al. This was verified by SEM examinations on the surfaces of deformed specimens.  相似文献   

12.
The microstructure and texture development of pure aluminum and aluminum alloy processed by high speed hot rolling are investigated. The aluminum sheets are rolled at temperatures ranging from 410°C to 560°C at a rolling speed of 15m/s without lubrication and quenched into water at an interval of 30 ms after rolling. The redundant shear strain induced by high friction increases beneath the surface at a reduction above 50% for Al alloy (AA5052) and above 60% for pure Al (AA1050). Dynamic recrystallization occurs in the surface region when the equivalent strain exceeds a critical value that depends on rolling temperature, while only recovery occurs in the center region. The critical equivalent strain for the occurrence of recrystallization in AA5052 is lower than that in AA1050. When the large strain is introduced beneath the surface, the shear texture, the main components of which are {001}<110> and {111}<110>, develops. In the center region, Cu-orientation and cube orientation develop. The shear texture beneath the surface is weak when recrystallization occurs.  相似文献   

13.
In high purity aluminium two different types of hot band textures were produced by changing the final hot rolling temperatures. The texture of the hot bands was found to be inhnmogeneous through thickness. The strong preferred orientation of {001}<110> developed in the surface layer of the hot band which had been rolled at the higher finishing temperature. For the lower finishing temperature sample, the cold rolling type of texture was formed in the hot band. The cold rolling texture was dependent on the initial hot rolling texture. The hot band which had strong {001}<110> at the surface layer led to the maximum orientation density at {44 11}<11 11 8> after the subsequent cold rolling. Preferred orientations near {123}<634> in the hot band caused the maximum at {123}<634> in the cold rolling texture. The experimental results were discussed based on the simulation test of deformation texture in which the rotation of orientations was calculated from the Taylor model. In this calculation, the strain state of the deformation zone in the rolling gap is assumed to vary with shears induced from the geometry and the friction.  相似文献   

14.
采用等温热压缩实验研究不同变形条件下(变形温度300~450℃、应变速率0.001~1 s?1)原位TiB2颗粒增强7075铝基复合材料的热成形行为、损伤机制和显微组织演变.结果表明,复合材料在低温和高应变速率下的主要损伤机制是颗粒断裂和界面脱粘,而在高温和低应变速率下主要是基体的韧窝断裂.此外,复合材料在高温、低应变...  相似文献   

15.
Hot compression tests of 2050 Al–Li alloy were performed in the deformation temperature range of 340–500 °C and strain rate range of 0.001–10 s–1 to investigate the hot deformation behavior of the alloy. The effects of friction and temperature difference on flow stress were analyzed and the flow curves were corrected. Based on the dynamic material model, processing map at a strain of 0.5 was established. The grain structure of the compressed samples was observed using optical microscopy. The results show that friction and temperature variation during the hot compression have significant influences on flow stress. The optimum processing domains are in the temperature range from 370 to 430 °C with the strain rate range from 0.01 to 0.001 s–1, and in the temperature range from 440 to 500 °C with the strain rate range from 0.3 to 0.01 s–1; the flow instable region is located at high strain rates (3–10 s–1) in the entire temperature range. Dynamic recovery (DRV) and dynamic recrystallization (DRX) are the main deformation mechanisms of the 2050 alloy in the stable domains, whereas the alloy exhibits flow localization in the instable region.  相似文献   

16.
通过热压缩实验研究了ZL270LF铝合金在变形量为70%,温度为300~550 ℃,应变速率为 0.01~10 s-1范围的热变形行为,建立了流变应力本构方程模型,绘制出了二维热加工图,确定了最佳热加工区域,采用电子背散射衍射(EBSD)和透射电子显微镜(TEM)技术研究了该合金的组织演变规律。结果表明:ZL270LF铝合金的流变应力随变形温度的升高和应变速率的降低而降低,热变形激活能为309.05 kJ/mol,最优热加工区为温度470~530 ℃、应变速率为0.01~1 s-1。该合金在热变形过程中存在3种不同的DRX机制,即连续动态再结晶(CDRX)、不连续动态再结晶(DDRX)和几何动态再结晶(GDRX),其中CDRX是ZL270LF铝合金动态再结晶的主要机制。  相似文献   

17.
Hot deformation behavior of the 3003 Al alloy was investigated by conducting hot compression tests at various temperatures (300?C500 °C) and strain rates (0.0l?C10.0 s?1). A constitutive equation was established to describe the flow behavior. The apparent activation energy of the 3003 Al alloy was determined to be 174.62 kJ·mol?1, which is higher than that for self-diffusion in pure Al (165 kJ·mol?1). Processing maps at a strain of 0.6 for hot working were developed on a dynamic materials model. The maps exhibit a flow instability domain at about 300?C380 °C and 1.0?C10.0 s?1. Dynamic recrystallization occurs extensively in the temperature range of 450?C500 °C and at the strain rate of 10.0 s?1. The optimum parameters of hot working for the 3003 Al alloy are confined at 500 °C and 10.0 s?1 with the highest efficiency (37%).  相似文献   

18.
The hot deformation characteristics of the Ti−5.7Al−2.1Sn−3.9Zr−2Mo−0.1Si (Ti-6242S) alloy with an acicular starting microstructure were analyzed using processing map. The uniaxial hot compression tests were performed at temperatures ranging from 850 to 1000 °C and at strain rates of 0.001−1 s−1. The developed processing map was used to determine the safe and unsafe deformation conditions of the alloy in association with the microstructural evolution by SEM and OM. It was recognized that the flow stress revealed differences in flow softening behavior by deformation at 1000 °C compared to the lower deformation temperatures, which was attributed to microstructural changes. The processing map developed for typical strain of 0.7 in two-phase field exhibited high efficiency value of power dissipation of about 55% at 950 °C and 0.001 s−1, basically due to extensive globularization. An increase in strain rate and a decrease in temperature resulted in a decrease in globularization of α lamellae, while α lamellar kinking increased. Eventually, the instability domain of flow behavior was identified in the temperature range of 850−900 °C and at the strain rate higher than 0.01 s−1 reflecting the flow localization and adiabatic shear banding. By considering the power efficiency domains and the microstructural observations, the deformation in the temperature range of 950−1000 °C and strain rate range of 0.001−0.01 s−1 was desirable leading to high efficiencies. It was realized that (950 °C, 0.001 s−1) was the optimum deformation condition for the alloy.  相似文献   

19.
Hot deformation behavior of extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy was studied using hot compression tests over deformation temperature range of 300–450 °C and strain rate range of 0.01–10 s?1. On the basis of experiments and dynamic material model, 2D processing maps and 3D power dissipation maps were developed for identification of exact instability regions and optimization of hot processing parameters. The experimental results indicated that the efficiency factor of energy dissipate (η) lowered to the minimum value when the deformation conditions located at the strain of 0.4, temperature of 300 °C and strain rate of 1 s?1. The softening mechanism was dynamic recovery, the grain shape was mainly flat, and the portion of high angle grain boundary (>15°) was 34%. While increasing the deformation temperature to 400 °C and decreasing the strain rate to 0.1 s?1, a maximum value of η was obtained. It can be found that the main softening mechanism was dynamic recrystallization, the structures were completely recrystallized, and the portion of high angle grain boundary accounted for 86.5%. According to 2D processing maps and 3D power dissipation maps, the optimum processing conditions for the extrusion preform of the spray-formed Al–9.0Mg–0.5Mn–0.1Ti alloy were in the deformation temperature range of 340–450 °C and the strain rate range of 0.01–0.1 s?1 with the power dissipation efficiency range of 38%–43%.  相似文献   

20.
The deformation behavior of as-forged Ti–43Al–9V–Y alloy was investigated by hot compression tests in the temperature range of 1100–1225 °C and strain rate range of 0.01–0.5 s−1. The results show that the alloy exhibits negative temperature sensitivity and positive strain rate sensitivity. The stress exponent (n = 3.02) and the apparent activation energy (Q = 342.27 kJ/mol) of the present alloy are lower than that of previous reported TiAl alloys, which suggests that the as-forged Ti–43Al–9V–Y alloy exhibits better deformability at low temperatures and high strain rates. A processing map for hot working was developed on the basis of a dynamic material model. The deformation mechanisms were analyzed by the processing map. The optimum processing condition at the strain of 0.6 is 1180–1210 °C/0.01–0.05 s−1. A crack-free Ti–43Al–9V–Y sheet was prepared by hot rolling at these optimized parameters. EBSD results show that dynamic recrystallization is more likely to occur for γ phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号