首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以50 mm口径旋进旋涡流量计为研究对象,利用计算流体动力学软件FLUENT,采用欧拉-欧拉模型,结合RNG k-ε湍流模型与SIMPLEC算法对流量计内部进行气固两相数值模拟和实验研究,对旋进旋涡流量计气固两相流动中固相的体积分布规律、速度场分布、压力场分布进行了探讨,并做了相应的实验研究。结果表明:颗粒浓度越大,监测点的压力频率越小,流量计读数越小,流体流动越复杂,在流道壁面上的固体颗粒分布越多。  相似文献   

2.
《流体机械》2016,(7):18-21
以150×100LN-32型螺旋离心泵为模型,采用欧拉多流体、RNG k-ε模型对其内部进行三维数值模拟。对比不同颗粒粒径以及浓度情况下固液两相流场,分析了在大颗粒情况下,固体颗粒在螺旋离心泵内的运动情况。通过固相体积分数、压力以及速度分布,得出了大颗粒固液两相流在螺旋离心泵内的运动特性。并以此为参照,分析大颗粒情况下螺旋离心泵磨损情况。  相似文献   

3.
为研究高体积分数固-液两相流对输送管道的冲蚀磨损程度,采用计算流体力学(CFD)和固液两相流理论,建立冲蚀磨损及流场模型,采用欧拉模型中的稠密离散相模型(DDPM),利用Ansys中的流体动力学模块,对输送管道中的颗粒流场特性和颗粒对管道的冲蚀磨损进行分析。结果表明,入口速度较低时冲蚀主要集中在水平管靠近出口附近,随着入口速度的增加,冲蚀区域逐渐移到弯管附近,且管道的最大冲蚀量有降低的趋势;冲蚀率的大小既与冲蚀速度有关,也与颗粒体积分数有关,当两者符合一定关系时,冲蚀率达到最大。  相似文献   

4.
液压滑阀配合间隙固体颗粒侵入及分布的数值模拟   总被引:1,自引:0,他引:1  
针对液压滑闽因油液污染而卡滞的问题,利用Fluent中的欧拉多相流模型对带阀芯阀体配合间隙的滑阀内流场进行固液两相流二维数值计算.研究发现:固体颗粒在阀口下游的间隙入口处浓度较高,颗粒在旋涡离心力和间隙两侧压差作用下侵入配合间隙;固体颗粒在旋涡中心分布较少,而在旋涡边缘区域浓度较高;随着固相颗粒的密度和颗粒粒径的增大,间隙内的固相体积分数逐渐增大.  相似文献   

5.
为获取垂直管道中多金属硫化物颗粒的水力提升条件和系统参数与提升性能的作用规律,采用理论分析和数值计算相结合的方法对多金属硫化物颗粒水力提升过程进行了仿真。建立了多金属硫化物颗粒水力提升过程的力学分析模型。基于FLUENT软件建立了垂直管道中多金属硫化物颗粒水力提升过程中固液两相流运动仿真模型。对不同系统参数下管道中颗粒相最大浓度的分布进行了仿真计算,仿真结果表明:多金属硫化物颗粒水力提升性能随着水相初速度的增大而增大,随着颗粒直径、颗粒相浓度的增大而减小。多金属硫化物颗粒水力提升过程中存在临界提升速度v0,当水相初速度vwv0时,多金属硫化物颗粒水力提升过程能顺利进行。多金属硫化物颗粒水力提升过程中,管道几何中心处颗粒相速度最大,颗粒运动时主要是沿着管道几何中心前进,管道几何中心处颗粒受到的阻力较小。  相似文献   

6.
气力输送系统T形盲管长度的优化   总被引:2,自引:0,他引:2  
采用双流体模型,对气力输送系统中T形盲管弯头的3维气固两相流场进行了数值模拟。计算分析结果表明,管道直径和颗粒直径越小,入口速度和固相体积浓度越大,流场压力损失越大。颗粒直径、固相体积浓度、气流入口速度越大,盲管长度△L与管道直径D的比值H应选取较大;H值的选取范围为0.5-3,不同管道直径的压力损失有着相同的变化趋势以及同样的H值。  相似文献   

7.
为获得旋流泵内更为符合物理真实的液固两相流动特征,在传统欧拉(Euler)双流体模型基础上加载群体平衡模型(PBM),以考虑实际存在的颗粒聚并、破碎等动力学行为,与CFD耦合计算了不同流量、颗粒粒径及浓度下的液固两相流场,分析了颗粒存在对泵外特性的影响规律。计算结果表明:从进口到出口,叶片背面附近颗粒粒径明显增大;在叶轮出口位置,同一半径上,从叶片工作面到背面附近存在粒径梯度;在外缘部,沿轴向形成粒径梯度。与Euler模型计算结果对比发现:加载PBM模型后,颗粒总体浓度分布特征存在差异;同一轴截面上,颗粒浓度在中心部的分布基本相同,而在中间和外缘部位置出现差异。PBM模型计算得到的泵扬程、效率曲线更接近于实验值,证明基于CFD-PBM耦合计算的预测精度更符合实际。  相似文献   

8.
通过欧拉-拉格朗日方法对气力输送系统中经常使用的楔式闸阀进行了气固两相流动和颗粒冲蚀磨损研究。结果发现:阀腔和凹槽中的气体速度要比管道中的气体速度低很多;楔式闸阀的凹槽中会逐渐积累大量的颗粒,颗粒会对闸板底部造成非常严重的冲蚀磨损。  相似文献   

9.
为了研究灯泡贯流式机组内流状态和磨损规律基于欧拉-欧拉法中的Particle非均匀相模型,对不同固相直径、浓度、导叶开度下水轮机固液两相流工况进行计算。结果表明,固相高浓度区集中在转轮域和尾水管进口处,且随着固相直径和浓度的增加而增加。随着固相直径和浓度的增加,导叶域表面压力、固相速度、固相浓度分布均增加,导叶背面更易发生磨损。在转轮域,固相高浓度区分布在叶片正面轮毂处和进水边,叶片背面整体固相浓度分布较高,且表面固相速度、浓度分布与固相直径和入口浓度呈正相关。  相似文献   

10.
采用CFD软件中的混合两相流模型、标准的k-ε湍流模型及SIMPLE算法,对地下管道挖掘机泥水系统中泥浆管内部流场进行数值模拟,揭示泥浆管内的压力与速度分布情况,结果表明在弯管处压力分布复杂,速度较大,对管道冲击力大,易损坏。并分析了不同入口速度、不同弯曲半径、不同颗粒体积浓度及不同水平长度对流体流动的影响。分析结果对管道的优化及延长管道寿命具有一定的指导意义,为泥水系统中泥浆泵的选型及施工时泥浆泵的控制提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号