首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical method for calculating the stress and strength ratio distribution of the hybrid rim-type composite flywheel rotor is presented with a consideration of the thermally induced residual stresses. The axisymmetric rotor is divided into several rings and the stiffness matrix for each ring is derived by solving the radial equilibrium equation and the stress–strain–temperature relations. The ring stiffness matrices are assembled into a symmetric global matrix satisfying the continuity equations at each interface with the assumptions of a modified generalized plane strain (MGPS). In the MGPS, the z-directional axial strains are assumed to vary linearly along the radial direction; εz=ε0+ε1r. The conditions that the z-directional force and the circumferential moment resultants vanish are thus used to solve the z-directional axial strains as well as the radial and circumferential strains. After solving the strain distributions, the on-axis stresses and the strength ratios are calculated at each ring. Three-dimensional finite element method (3D FEM) is then used to verify the accuracy of the present method. The results are also compared with those based on the assumption of a plane stress (PSS). In this case, the analysis of MGPS better matches with 3D FEM results than PSS. An optimum design is then performed maximizing total stored energy (TSE) with the thickness of each composite rim as design variables. The optimal design obtained in this study, which considers material sequence, provides a more effective way of maximizing TSE. It is found that the consideration of the residual stress in the design of the hybrid flywheel rotor is crucial. The result of the optimal designs shows that TSE with consideration of ΔT reduces by about 30%.  相似文献   

2.
The dynamic behaviour of slender tapered beams is examined, in the presence of conservative axial loads, and lower and upper bounds on the free vibration frequencies are obtained. Two different approaches are employed, in order to obtain a narrow range to which the frequencies belong. In the first case a Rayleigh–Ritz method is used, with displacement trial functions given by linearly independent orthogonal polynomials. In the latter case the structure is reduced to rigid bars, connected together by means of elastic hinges, and lower bound to the true frequencies is obtained. It is well known that the Rayleigh–Ritz approach leads to upper bounds, and therefore a (narrow) range is obtained for the exact frequencies.The paper ends with some numerical examples which confirm the usefulness of the proposed methods, and are in good agreement with some previously known results.  相似文献   

3.
Using Hill's 1948 criterion [1] for anisotropic yielding and the strain ratio, r, it has been shown that the ratio of the balanced biaxial yield stress, σb, to the uniaxial tensile yield stress, σu, should be > 1 if r > 1 and < 1 if r < 1. Certain experimental results[2] showed that with commercial-purity aluminium, where r < 1, the ratio of σb to σu was always > 1 in that study. This was termed anomalous behaviour. Hill has proposed a new criterion[3] that not only appears to provide greater flexibility than does his earlier version but can also encompass anomalous behaviour which the earlier version cannot.Four simplified cases of the 1979 criterion have been proposed[3] and to date only one has been subjected to experimental assessment. However, the goals of those studies were not concerned with anomalous behaviour per se. In this paper, all four cases are analysed to determine the interrelationships of the parameters r and m (exponent in Hill's new criterion) required to encompass anomalous behaviour. It is found that for each of the four cases anomalous behaviour is predicted for a range of (m, r) combinations which are presented graphically in this paper.  相似文献   

4.
A two-level optimization procedure for determining elastic constants E1, E2, G12, and ν12 of laminated composite materials using measured axial and lateral strains of two symmetric angle-ply beams with different fiber angles subjected to three-point-bending testing is presented. In the first-level optimization process, the theoretically and experimentally predicted axial and lateral strains of a [(45°/−45°)6]s beam are used to construct the strain discrepancy function which is a measure of the sum of the squared differences between the experimental and theoretical predictions of the axial and lateral strains. The identification of the material constants is then formulated as a constrained minimization problem in which the best estimates of shear modulus and Poisson's ratio of the beam are determined to make the strain discrepancy function a global minimum. In the second-level optimization process, shear modulus and Poisson's ratio determined in the first level of optimization are kept constant and Young's moduli of the second angle-ply beam with fiber angles different from 45° are identified by minimizing the strain discrepancy function established at this level of optimization. The suitability of the proposed procedure for material characterization of composite materials has been demonstrated by means of a number of examples.  相似文献   

5.
Systematic three-dimensional elastic–plastic finite element analyses are carried out for a semi-elliptical surface crack in plates under tension. Various aspect ratios (a/c) of three-dimensional fields are analyzed near the semi-elliptical surface crack front. It is shown that the developed JQ annulus can effectively describe the influence of the in-plane stress parameters as the radial distances (r/(J/σ0)) are relatively small, while the approach can hardly characterize it very well with the increase of r/(J/σ0) and strain hardening exponent n. In order to characterize the important stress parameters well, such as the equivalent stress σe, the hydrostatic stress σm and the stress triaxiality Rσ, the three-parameter JQTTz approach is proposed based on the numerical analysis as well as a critical discussion on the previous studies. By introducing the out-of-plane stress constraint factor Tz and the QT term, which is determined by matching the finite element analysis results, the JQTTz solution can predict the corresponding three-dimensional stress state parameters and the equivalent strain effectively in the whole plastic zone. Furthermore, it is exciting to find that the values of J-integral are independent of n under small-scale yielding condition when the stress-free boundary conditions at the side and back surfaces of the plate have negligible effect on the stress state along the crack front, and the normalized J tends to a same value when φ equals about 31.5° for different a/c and n. Finally, the empirical formula of Tz and the stress components are provided to predict the stress state parameters effectively.  相似文献   

6.
郭华  张深逢  陈康  宋云峰  叶岗 《光学仪器》2016,38(3):256-261
为了实现物体的三维振动分析测量,设计了一种基于五束激光的多普勒振动测量系统.该系统将五束激光汇聚到一个焦点,并照射到被反射膜覆盖的被测物体表面,经过反射后,散射光被光电二极管接收,并进入高精度信号处理系统,分别得到五路振动信息,通过计算机处理后,可以分别解析得到包括频率和振幅的三维振动信息.实验结果表明,该系统有望被应用于高精度的无接触振动测量.  相似文献   

7.
A new method for fast evaluation of cutting forces in milling is introduced and tested experimentally. Unlike all existing procedures, which include the use of cutting models and approximate assumptions, in this method, the elementary functions of the cutting force are obtained from measured values only.The basic force functions for the whole feed range are acquired from one experiment using a single-tooth full-diameter (slot) milling, applying a specially developed procedure. The milling experiment is conducted under low-impact conditions, enabling accurate measurement and convenient signal processing. The basic force functions are then integrated and superimposed, using known procedures, to combine the total force in any multitooth milling combination. In this work the method is explained and tested experimentally.The suggested method enables a reliable evaluation of the cutting forces, while demanding minimal experimental work, the method applies to cutters having complicated edge geometry, and to high speed milling.Nomenclature a radial depth of cut 0<a<D - feed per tooth ratio 0<1 - d axial depth of cut - D cutter diameter - a/D radial depth ratio - cutter rotation angle - cutter rotation angle [6] - F x,y,z() instantaneous edge cutting forces in fixture coordinates - F t,r,z() instantaneous edge cutting forces in tool coordinates - F x,y,z * Ft,r,z tool cutting force components on a multitooth cutter - h instantaneous chip thickness [6] - h* equivalent edge coefficient [6] - r 1,r 2 tangential radial ratio coefficient [6] - K T tangential specific cutting force [4] - K R radial specific cutting force [4] - N number of teeth - R r resolution reduction factor - t instantaneous chip thickness - S 1,S feed per tooth  相似文献   

8.
The buckling problem of clamped, polar orthotropic annular plates under internal radial load and torsion is studied theoretically with asymmetric modes taken into consideration. The problem is solved by means of the Galerkin method with the deflection function assumed in the form of cosine series in conjunction with a coordinate transformation. The critical combinations (λsc, λic) of torsion and internal radial load are determined for a wide range of polar orthotropic material properties and various hole sizes of the orthotropic annulus. It is found that there are some ranges of λic where λsc increases with λic, principally when the internal radial load λic > 0 (radial compression) acts on the annular plate.  相似文献   

9.
In this paper a model and the interactive program system MECCANO2 for multiple criteria selection of optimal machining conditions in multipass turning is presented. Optimisation is done for the most important machining conditions: cutting speed, feed and depth of cut, with respect to combinations of the criteria, minimum unit production cost, minimum unit production time and minimum number of passes. The user can specify values of model parameters, criterion weights and desired tool life. MECCANO2 provides graphical presentation of results which makes it very suitable for application in an educational environment.Nomenclature a min,a max minimum and maximum depth of cut for chipbreaking [mm] - a w maximum stock to be machined [mm] - C a, a, a coefficient and exponents in the axial cutting force equation - C r, r, r coefficient and exponents in the radial cutting force equation - C T, , , coefficient and exponents in the tool life equation - C v, v, v coefficient and exponents in the tangential cutting force equation - D w maximum permissible radial deflection of workpiece [mm] - F a axial cutting force [N] - F b design load on bearings [N] - F c clamping force [N] - F k /* minimum value of criterionk, k=1, ...,n, when considered separately - f m rotational flexibility of the workpiece at the point where the cutting force is applied [mm Nm–1] - f r radial flexibility of the workpiece at the point where the cutting force is applied [mm N–1] - F r radial cutting force [N] - F tmax maximum allowed tangential force to prevent tool breakage [N] - F v tangential cutting force [N] - k slope angle of the line defining the minimum feed as a function of depth of cut [mm] - l length of workpiece in the chuck [mm] - L length of workpiece from the chuck [mm] - L c insert cutting edge length [mm] - M g cost of jigs, fixtures, etc. [$] - M o cost of labour and overheads [$/min] - M u tool cost per cutting edge [$] - n number of criteria considered simultaneously - N q, Np minimum and maximum spindle speed [rev/min] - N s batch size - N z spindle speed for maximum power [rev/min] - P a maximum power at the point where the power-speed characteristic curve changes (constant power range) [kW] - R tool nose radius [mm] - r workpiece radius at the cutting point [mm] - r c workpiece radius in the chuck [mm] - s min,s max minimum and maximum feed for chipbreaking [mm] - T tool life [min] - T a process adjusting time [min] - T b loading and unloading time [min] - T d tool change time [min] - T des desired tool life [min] - T h total set-up time [min] - T t machining time [min] - V rt speed of rapid traverse [m/min] - W volume of material to be removed [mm3] - W k weight of criterionk, k=1, ...,n - x=[x 1,x 2,x 3 ] T vector of decision variables - x 1 cutting speed [m/min] - x 2 feed [mm/rev] - x 3 depth of cut [mm] - approach angle [rad] - a coefficient of friction in axial direction between workpiece and chuck - c coefficient of friction in circumferential direction between workpiece and chuck  相似文献   

10.
The situation of structural elements supporting motors or engines attached to them is usual in technological applications. The operation of machine may introduce severe dynamic stresses on the beam. It is important, then, to know the natural frequencies of the coupled beam-mass system, in order to obtain a proper design of the structural elements. The literature regarding the free vibration analysis of Bernoulli–Euler single-span beams carrying a number of spring-mass system and Bernoulli–Euler multi-span beams carrying multiple spring-mass systems are plenty, but that of Timoshenko multi-span beams carrying multiple spring-mass systems with axial force effect is fewer. This paper aims at determining the exact solutions for the first five natural frequencies and mode shapes of a Timoshenko multi-span beam subjected to the axial force. The model allows analyzing the influence of the shear and axial force effects and spring-mass systems on the dynamic behavior of the beams by using Timoshenko Beam Theory (TBT). The effects of attached spring-mass systems on the free vibration characteristics of the 1–4 span beams are studied. The calculated natural frequencies of Timoshenko multi-span beam by using secant method for non-trivial solution for the different values of axial force are given in tables. The mode shapes are presented in graphs.  相似文献   

11.
In the conventional finite element method (FEM), the dynamic characteristics of a longitudinally vibrating rod with mass density ρr, Young's modulus Er, cross-sectional area Ar and total length ℓr are considered to be the same as those of a helical spring with stiffness constant kr=ArEr/ℓr and total mass mr=ρrArr. For a lumped-mass model, the mass matrix of a rod element is a 2×2 diagonal one with each of its non-zero coefficients to be equal to one half of the total rod mass (i.e., 0.5mr). Furthermore, the dynamic characteristics of a rod on the basis of last “lumped-mass” model have been found to be very close to those on the basis of “consistent-mass” model. Thus, one can easily take into account of the inertial effect of a helical spring using a massless one with “one half of its total mass”, respectively, concentrated at its two ends (in Method 2) instead of modeling it by an elastic rod with uniform mass per unit length (in Method 1). When one more spring-mass system is attached to the beam, the total number of unknown constants increases “one” in Method 2 and “two” in Method 1, thus, Method 2 will reduce more effort than Method 1 for studying the dynamic behaviors of a beam carrying a number of spring-mass systems with mass of each helical spring considered. In this paper, the formulations of Methods 1 and 2 are presented first and then the numerical examples are illustrated to confirm the reliability of the presented theory and the developed computer programs. Finally, the effect concerning mass of each helical spring of the spring-mass systems is studied.  相似文献   

12.
An estimate has been made of the errors introduced in the plastic analysis of rotationally symmetric shells by the neglect of transverse normal stress σz, and the ratio of thickness to the radii of curvature in comparison to unity. It is shown that the latter effect will generally be negligible and that the more important factor is that due to σz. An example of a complete sphere under internal pressure is considered, and the further effect of moving the pressure onto the centre line examined.  相似文献   

13.
This paper presents the development of a generalised cutting force model for both end-milling and face-milling operations. The model specifies the interaction between workpiece and multiple cutter flutes by the convolution of cutting-edge geometry function with a train of impulses having the period equivalent to tooth spacing. Meanwhile, the effect of radial and axial depths of cut are represented by the modulation of the cutting-edge geometry function with a rectangular window function. This formulation leads to the development of an expression of end/face-milling forces in explicit terms of material properties, tool geometry, cutting parameters and process configuration. The explicitness of the resulting model provides a unique alternative to other studies in the literature commonly based on numerical integrations. The closed-form nature of the cutting force expression can facilitate the planning, optimisation, monitoring, and control of milling operations with complicated tool—work interactions. Experiments were performed over various cutting conditions and results are presented, in verification of the model fidelity, in both the angle and frequency domains.Notation * convolution operator - helix angle of an end mill - A,R axial and radial angles of a face mill - angular position of any cutting point in the cylindrical coordinate system - unit area impulse function - (i–1)(–T o) (i–1)th derivative of (–T o) with respect to - angular position of cutter in the negative Y-direction - L, lead and inclination angles of a face mill - angular position of any cutting point in the negative Y-direction - 1, 2 entry and exit angles - upper limit of cutting edge function in terms of - as defined in equation (10) - A xk ,A yk ,A zk kth harmonics of cutting forces in the X-, Y-, and Z-directions - d a,d r axial and radial depth of cut - dA instantaneous cut area - D diameter of cutter - f o frequency of spindle - f t,f r,f a local cutting forces in the tangential, radial, and axial directions - f x ,f y ,f z local cutting forces in the X-, Y-, and Z-directions - F x ,F y ,F z resultant cutting forces in the angle domain in the X-, Y-, and Z-directions - F as defined in equation (5) - h derivative of height function of cutting edge with respect to - h() height function of one cutting edge with respect to - H height of any cutting point - K r,K a radial-to-tangential and axial-to-tangential cutting force ratios - K t tangential cutting pressure constant - K as defined in equation (6) - p as defined in equation (6) - N number of cutting edges - r() radius function of one cutting edge with respect to - R radius of any cutting point - T cutting engagement time function of any cutting point - T o cutting engagement time of the cutting point at =0 - T th() tooth sequence function - t c average cut thickness - t x feed per tooth - W A,W W,W C amplitude, width and centre of a window function - W(,) unit rectangular window function - y min,y max minimum and maximum positions of workpiece in the Y-direction - Z min,Z max integration limits in the Z-direction  相似文献   

14.
In a recent paper, the Ritz method with simple algebraic polynomials as trial functions was used to obtain an eigenvalue equation for the free vibration of a class of homogeneous solids with cavities. The method presented is here extended to the study of a class of non-homogeneous solids, in which each solid is composed of a number of isotropic layers with different material properties. The Cartesian coordinate system is used to describe the geometry of the solid which is modelled by means of a segment bounded by the yz, zx and xy orthogonal coordinate planes and by two curved surfaces which are defined by fairly general polynomial expressions in the coordinates x, y and z. The surface representing the interface between two material layers in the solid is also described by a polynomial expression in the coordinates x, y and z. In order to demonstrate the accuracy of the approach, natural frequencies are given for both a two- and three-layered spherical shell and for a homogeneous hollow cylinder, as computed using the present approach, and are compared with those obtained using an exact solution. Results are then given for a number of two- and three-layered cylinders and, to demonstrate the versatility of the approach, natural frequencies are given for a five-layered cantilevered beam with a central circular hole as well as for a number of composite solids of more general shape.  相似文献   

15.
The kinematics, stiffness, and repeatability of a moving groove, dual-purpose positioner-fixture were determined experimentally. A dual-purpose positioner-fixture is an alignment device that may be operated in a fixture mode or a six-axis nanopositioning mode. When operated in fixture mode, experiments show standard deviation in repeatability of 11, 11, and 38 nm in x, y, and z; and 0.7, 0.3, and 0.3 μrad in θx, θy, and θz. The stiffness characteristics were shown to match predictions within 5%. When operated in nanopositioner mode, the device demonstrated 4 nm resolution and a range, of 40 μm × 40 μm × 80 μm in translation and 800 μrad × 800 μrad × 400 μrad in rotation. The fixture possesses a load capacity of 450 N and a natural frequency of 200 Hz when the fixture is preloaded to 225 N.  相似文献   

16.
Nondiffracting cos beams may be used in the object space of an optical microscope for causing a nonuniform illumination. This irradiance distribution consists in a set of equidistant plane maxima, and therefore the light radiated by the sample decays in its neighborhood. We propose to observe over an object plane coinciding with one of these illumination peaks, which results in a superresolving axial effect. For that purpose, illumination and detection should be oblique processes, and a computer-assisted z-scanning process is needed in order to access the axial structure of a thick object.  相似文献   

17.
In this paper, a precision inspection technique using CAD/CAI integration is proposed for parts having very thin and sharply curved features. The technique begins with feature reconstruction of turbine blades which have combined geometry, such as splines, and thin small radius circles. The alignment procedures consists of two phases — rough and fine phases: the rough phase alignment is based on the conventional 6 points probing on the clear cut surfaces, and the fine phase alignment is based on the initial measurement of the curved parts using the least-squares technique based on iterative measurement feedback. For the analysis of profile tolerance of parts, the actual measured points are obtained by finding the closest points on the CAD geometry by the subdivision technique developed. The Tschebyscheff norm is applied iteratively, giving an accurate profile tolerance. The inspection technique developed is applied to practical blade manufacturing, and has demonstrated good performance.Nomenclature r i (u),r j (u) 3D vector curve representing theith,jth curve segment for spline - u, parameters in [0, 1] representing curve - P i ,P i+1 ith, (i+1)th control points on the spline curve along the airfoil direction - Q j ,Q j+1 jth, (j+1)th control points on the spline curve along the vertical direction - W i ratio of chord length to the previous chord length on the spline curve - C(Cx, Cy) centre coordinate of the edge circle - o, initial angle and range angle of the edge circle - N jp ,N normal vector on the surface patch formed byP i ,P i+1,Q j ,Q j+1 control points - A 1 toA 6 6 probing points for the rough phase alignment - A 1 toA6 contact points at the clear cut surface corresponding to theA 1 toA 6 - X(a x,b x,c x),Y(a y,b y,c y),Z(a z,b z,c z) base vectors for CAD coordinate system with respect to the CCM coordinate system - O (O x,O y,O z) origin of the workpiece in the CMM coordinate system - D measurement target points of the workpiece - r probe radius - M coordinate measurement target points in the CMM coordinate system - DM direction vector of the measurement target points in the CMM coordinate system - T 1 transformation matrix of 4×4 for the rough phase alignment - T 2 transformation matrix of 4×4 for the fine phase alignment - MM, MM i measured data of the measurement target points - Lp Tschebyscheff norm of powerP  相似文献   

18.
Machining process simulation systems can be used to verify NC (numerically controlled) programs as well as to optimise the machining phase of the production. These systems contribute towards improving the reliability and efficiency of the process as well as the quality of the final product. Such systems are particularly needed by industries dealing with complex cutting operations, where the generation of NC code represents a very complex and error-prone task. A major impediment to implementing these systems is the lack of a general and accurate geometric method for extracting the required geometric information. In this paper, a novel approach to performing this task is presented. It uses a general and accurate representation of the part shape, removed material, and cutting edges, and can be used for any machining process. Solid models are used to represent the part and removed material volume. Bezier curves (in 3D space) are used to represent cutting edges. It is shown that by intersecting the removed material volume with the Bezier curves, in-cut segments of the tool cutting edges can be extracted. Using these segments, instantaneous cutting forces as well as any other process parameters can be evaluated. It is also shown that by using B-rep (Boundary representation) polyhedral models for representing solids, and cubic Bezier curves for representing cutting edges, efficient, generic procedures for geometric simulation can be implemented. The procedure is demonstrated and verified experimentally for the case of ball end-milling. A very good agreement was found between simulated cutting forces and their experimental counterparts. This proves the validity of the new approach.Notation cx 3,cx 2,cx 1,cx 0 parameters of cubic polynomialx(t) - cy 3,cy 2,cy 1,cy 0 parameters of cubic polynomialy(t) - cz 3,cz 2,cz 1,cz 0 parameters of cubic polynomialz(t) - bx i ,by i ,bz i x-,y-, andz-coordinates of ith control point, respectively - b i ith control point - R tool radius (m) - angular position of point on cutting edge measured from positivex-axis in case of flat end mill (°) - helix angle of cutting edge on flat end mill (°) - A, B, C, D parameters of the equation of a plane - td i ,tu i lower end and upper end of theith in-cut segment (before updating) - n number of in-cut segments (before updating) - td j ,tu j lower end and upper end of theith in-cut segment (after updating) - m number of in-cut segments (after updating) - dF t , dF r tangential and radial components of the infinitesimal cutting force (N) - K t ,K r empirical constants in tangential force and radial force equations (N/m2) - b thickness of axial infinitesimal element of cutting edge (m) - h instantaneous chip thickness of axial infinitesimal element of cutting edge (m) - s shear strength of workpiece (N/m2) - dA c cross-section area of undeformed chip on the infinitesimal element of cutting edge (m2) - shear angle (°) - e effective rake angle (°) - friction angle (°) - or (t) angular position of point on cutting edge of ball nose of ball end mill (rad) - u j , d j lower end and upper end ofjth in-cut segment (rad) - t parameter  相似文献   

19.
Two methods are proposed for estimating the number of separated particles within a solid structure per unit volume of structure, Nv. Apart from being arranged with independence of any size parameter, no special assumptions upon the size, shape and orientation of the particles are made. The first method is based on the identity NV = (NA)u ? μu?1, where (NA)u is the mean number of particle sections per unit area of a plane probe Tu which is uniform random within the structure and perpendicular to a given direction u, whereas μu is the mean particle caliper length along u. The second method uses NV = AA?V?1, where AA is the mean areal fraction of the particles per unit area of section, whereas v is the mean particle volume. The estimation of (NA)u, μu, and v requires the examination of parallel serial sections above and below Tu. Particle model reconstructions are not needed, however. Previous approaches to the problem are discussed.  相似文献   

20.
In order to prevent tool breakage in milling, maximum total cutting force is regulated at a specific constant level, or threshold, through feed rate control. Since the threshold is a function of the immersion ratio, an estimation of the immersion ratio is necessary to flexibly determine the threshold. In this paper, a method of in-process estimation of the radial immersion ratio in face milling is presented. When an insert finishes sweeping, a sudden drop in cutting forces occurs. These force drops are equal to the cutting forces that act upon a single insert at the swept cutting angle and they can be acquired from cutting force signals in the feed and cross-feed directions. Average cutting forces per tooth period can also be calculated from the cutting force signals in two directions. The ratio of cutting forces acting upon a single insert at the swept angle of cut and the ratio of average cutting forces per tooth period are functions of the swept angle of cut and the ratio of radial to tangential cutting force. Using these parameters, the radial immersion ratio is estimated. Various experiments are performed to verify the proposed method. The results show that the radial immersion ratio can be estimated by this method regardless of other cutting conditions.Nomenclature FT, FR tangential and radial forces - FX, FY cutting forces in feed direction and cross feed direction - dFX, dFY cutting force differences before and after the immersion angle in X and Y direction - Ks specific cutting pressure - a depth of cut - r ratio between tangential force and radial force - st feed per tooth - instantaneous angle of cut - s swept angle of cut - T tooth spacing angle - w radial width of cut - R cutter radius - z number of inserts  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号