共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of analytical methods and the influence of milk components on milk urea nitrogen recovery 总被引:1,自引:0,他引:1
The objectives of this study were to compare analytical instruments used in independent laboratories to measure milk urea nitrogen (MUN) and determine whether any components in milk affect the recovery of MUN. Milk samples were collected from 100 Holstein cows fed one ration in a commercial dairy herd with a rolling herd average of 9500 kg. Half of each sample was spiked with 4 mg/dL of urea N, while the other half was not, to determine recovery. Both milk samples (spiked and not spiked) were sent to 14 independent laboratories involved in the MUN Quality Control Program through National Dairy Herd Improvement Association and analyzed for MUN, fat, protein, lactose, somatic cell count (SCC), and total solids. The laboratories analyzed MUN using CL-10 (n = 3), Skalar (n = 2), Bentley (n = 3), Foss 4000 (n = 3) or Foss 6000 (n = 3) systems. When recovery of MUN was evaluated among the 5 analytical methods, the mean recoveries for the Bentley, Foss 6000, and Skalar systems were 92.1 (SE = 2.76%), 95.4 (SE = 10.1%), and 95.1% (SE = 7.61%), respectively, and did not differ from each other. However, MUN recovery was 85.0% (SE = 2.8%) for the CL-10 system and 47.1% (SE = 9.9%) for the Foss 4000 system, both of which differed from the other 3 systems. Recoveries from Foss 4000, Foss 6000, and Skalar varied among laboratories using the same instrument. As initial MUN concentration increased, recovery decreased using the Bentley and CL-10 systems. Increasing milk fat resulted in a decrease in recovery using the Foss 6000 system. For 4 of the 5 methods, recovery of MUN was not associated with specific milk components. Recovery of MUN was inconsistent for laboratories using the Foss 4000 and the Foss 6000 method and using these systems may result in an overestimation or underestimation of MUN. 相似文献
2.
The objectives of this study were to assess the relationship between urinary urea N (UUN) excretion (g/d) and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) content. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123 ± 26 d in milk (DIM); mean ± standard deviation], mid (175 ± 3 DIM), and late (221 ± 12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. Graded amounts of urea were added to the basal total mixed ration to linearly increase dietary CP content while maintaining similar concentrations of all other nutrients among treatments. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of urine as well as milk and blood sample collection. Dry matter intake and yields of milk, fat, protein, and lactose declined progressively with lactation stage and were unaffected by dietary CP content. Milk and plasma urea-N as well as UUN concentration and excretion increased in response to dietary CP content. Milk and urine urea-N concentration rose at increasing and decreasing rates, respectively, as a function of plasma urea-N. The renal urea-N clearance rate differed among lactation stages and dietary CP contents. The relationship between UUN excretion and MUN differed among lactation stages and diverged from linearity for cows in early and late lactation. However, these differences were restricted to very high MUN concentrations. Milk urea N may be a useful tool to predict the UUN excretion and ultimately NH3 emission from dairy cattle manure. 相似文献
3.
The main objectives of this study were to assess the relationship between ammonia emissions from dairy cattle manure and milk urea N (MUN; mg/dL) and to test whether the relationship was affected by stage of lactation and the dietary crude protein (CP) concentration. Twelve lactating multiparous Holstein cows were randomly selected and blocked into 3 groups of 4 cows intended to represent early [123 ± 26 d in milk (DIM)], mid (175 ± 3 DIM), and late (221 ± 12 DIM) lactation stages. Cows within each stage of lactation were randomly assigned to a treatment sequence within a split-plot Latin square design balanced for carryover effects. Stage of lactation formed the main plots (squares) and dietary CP levels (15, 17, 19, and 21% of diet dry matter) formed the subplots. The experimental periods lasted 7 d, with d 1 to 6 used for adjustment to diets and d 7 used for total collection of feces and urine as well as milk sample collection. The feces and urine from each cow were mixed in the proportions in which they were excreted to make slurry that was used to measure ammonia emissions at 22.5°C over 24 h using flux chambers. Samples of manure slurry were taken before and after ammonia emission measurements. The amount of slurry increased by 22% as dietary CP concentration increased from 15 to 21%, largely because of a greater urine volume (25.3 to 37.1 kg/d). Initial urea N concentration increased linearly with dietary CP from 153.5 to 465.2 mg/dL in manure slurries from cows fed 15 to 21% CP diets. Despite the large initial differences, the final concentration of urea N in manure slurries was less than 10.86 mg/dL for all dietary treatments. The final total ammoniacal N concentration in manure slurries increased linearly from 228.2 to 508.7 mg/dL as dietary CP content increased from 15 to 21%. Ammonia emissions from manure slurries ranged between 57 and 149 g of N/d per cow and increased linearly with dietary CP content, but were unaffected by stage of lactation. Ammonia emission expressed as a proportion of N intake increased with percentage CP in the diet from about 12 to 20%, whereas ammonia emission as a proportion of urinary urea N excretion decreased from 67 to 47%. There was a strong relationship between ammonia emission and MUN [ammonia emission (g/d per cow) = 25.0 (±6.72) + 5.03 (±0.373) × MUN (mg/dL); R2 = 0.85], which was not different among lactation stages. Milk urea N concentration is one of several factors that allows prediction of ammonia emissions from dairy cattle manure. 相似文献
4.
Milk urea N (MUN) is used by dairy nutritionists and producers to monitor dietary protein intake and is indicative of N utilization in lactating dairy cows. Two experiments were conducted to explore discrepancies in MUN results provided by 3 milk processing laboratories using different methods. An additional experiment was conducted to evaluate the effect of 2-bromo-2-nitropropane-1, 3-diol (bronopol) on MUN analysis. In experiment 1, 10 replicates of bulk tank milk samples, collected from the Pennsylvania State University's Dairy Center over 5 consecutive days, were sent to 3 milk processing laboratories in Pennsylvania. Average MUN differed between laboratory A (14.9 ± 0.40 mg/dL; analyzed on MilkoScan 4000; Foss, Hillerød, Denmark), laboratory B (6.5 ± 0.17 mg/dL; MilkoScan FT + 6000), and laboratory C (7.4 ± 0.36 mg/dL; MilkoScan 6000). In experiment 2, milk samples were spiked with urea at 0 (7.3 to 15.0 mg/dL, depending on the laboratory analyzing the samples), 17.2, 34.2, and 51.5 mg/dL of milk. Two 35-mL samples from each urea level were sent to the 3 laboratories used in experiment 1. Average analyzed MUN was greater than predicted (calculated for each laboratory based on the control; 0 mg of added urea): for laboratory A (23.2 vs. 21.0 mg/dL), laboratory B (18.0 vs. 13.3 mg/dL), and laboratory C (20.6 vs. 15.2 mg/dL). In experiment 3, replicated milk samples were preserved with 0 to 1.35 mg of bronopol/mL of milk and submitted to one milk processing laboratory that analyzed MUN using 2 different methods. Milk samples with increasing amounts of bronopol ranged in MUN concentration from 7.7 to 11.9 mg/dL and from 9.0 to 9.3 mg/dL when analyzed on MilkoScan 4000 or CL 10 (EuroChem, Moscow, Russia), respectively. In conclusion, measured MUN concentrations varied due to analytical procedure used by milk processing laboratories and were affected by the amount of bronopol used to preserve milk sample, when milk was analyzed using a mid-infrared analyzer. Thus, it is important to maintain consistency in milk sample preservation and analysis to ensure precision of MUN results. 相似文献
5.
Our first objective was to redesign a modified 14-sample milk calibration sample set to obtain a well-distributed range of milk urea nitrogen (MUN) concentrations while maintaining orthogonality with variation in fat, protein, and lactose concentration. Our second objective was to determine the within- and between-laboratory variation in the enzymatic spectrophotometric method on the modified milk calibration samples and degree of uncertainty in MUN reference values, and then use the modified milk calibration samples to evaluate and improve the performance of mid-infrared partial least squares (PLS) models for prediction of MUN concentration in milk. Changes in the modified milk calibration sample formulation and manufacturing procedure were made to achieve the desired range of MUN concentrations. A spectrophotometric enzymatic reference method was used to determine MUN reference values, and the modified milk calibration samples were used to calibrate 3 mid-infrared milk analyzers. The within- and between-laboratory variation in the reference values for MUN were 0.43 and 0.77%, respectively, and the average expanded analytical uncertainty for the mean MUN value of the 14-sample calibration set was (mean ± SD) 16.15 mg/100 g ± 0.09 of milk. After slope and intercept adjustment to achieve a mean difference of zero with the calibration samples, it could be seen that the standard deviation of the differences of predicted versus reference MUN values among 3 different instruments and their PLS models were quite different. The orthogonal sample set was used (1) to determine when a PLS model did not correctly model out the background variation in fat, true protein, or anhydrous lactose; (2) to calculate an intercorrection factor to eliminate that effect, and (3) to improve the model performance (i.e., 50% reduction in standard deviation of the difference between instrument predictions and reference chemistry values for MUN). 相似文献
6.
The objective of this study was to use field data collected by dairy herd improvement programs to estimate genetic parameters for concentrations of milk urea nitrogen (MUN). Edited data were 36,074 test-day records of MUN and yields of milk, fat, and protein obtained from 6102 cows in Holstein herds in Ontario, Canada. Data were divided into three sets, for the first three lactations. Two analyses were performed on data from each lactation. The first procedure used ANOVA to estimate the significance of the effects of several environmental factors on MUN. Herd-test-day effects had the most significant impact on MUN. Effects of stage of lactation were also important, and MUN levels tended to increase from the time of peak yield until the end of lactation. The second analysis used a random regression model to estimate heritabilities and genetic correlations of MUN and the yield traits. Heritability estimates for MUN in lactations one, two, and three were 0.44, 0.59, and 0.48, respectively. Heritabilities for the yield traits were of a similar magnitude. Little relationship was observed between MUN and yield. Raw phenotypic correlations were all <0.10 (absolute value). Genetic correlations with production traits were close to zero in lactations one and three and only slightly positive in lactation two. The results indicate that selection on MUN is possible, but relationships between MUN and other economically important traits such as metabolic disease and fertility are needed. 相似文献
7.
Sources of variation in milk urea nitrogen in Ohio dairy herds 总被引:6,自引:0,他引:6
The purpose of this study was to estimate the amount of variation in milk urea nitrogen (MUN) concentrations attributable to test-day, individual cow, and herd effects and to describe factors associated with MUN measurements in Ohio dairy herds. The data came from 24 Holstein herds, half of which were classified as low producing (LP) [rolling herd average (RHA) milk production < 7,258 kg] and half as high producing (HP) herds (RHA production > 10,433 kg). MUN concentration was measured from cow's monthly test-day milk samples. The data were analyzed using multilevel modeling technique in MLwiN, separately for LP and HP herds. The unadjusted mean MUN was 13.9 mg/dl for the HP herds and 11.3 mg/dl for the LP herds. The variance structure was different between the two groups. Most of the variability was found at test-day level in the LP herds, but at herd level in HP herds. MUN was lowest during the first month of lactation, and also season was associated with MUN in both groups. Test-day milk yield, milk fat percentage, and SCC were associated with MUN in the HP herds. With significant explanatory variables in the model, proportionally more of the variation was explained at herd level and less at test day level in both groups. Lower variability in MUN between test days in the HP herds may indicate more consistent day-to-day feeding and management within a herd. The great variability between test days should be considered when interpreting MUN and samples should be collected at the same time of the day to minimize day-to-day variability. 相似文献
8.
The hypothesis of this field study was that providing farmers with information regarding their herd's milk urea nitrogen (MUN) would result in more accurate feed management and a change in MUN toward target values. All dairy herd bulk tanks (n = 1156) in the Maryland and Virginia Milk Producers' Cooperative were tested for MUN each month for six months ending in May 1999. Farmers (n = 454) who returned a survey were provided with the results of their MUN analysis each month along with interpretive information. Survey results indicated that most (89.5%) dairy farmers did not routinely use MUN prior to participating in the project, but most (88%) extension agents and nutritionists in the region recommended it. The average MUN across all farms in the study increased in the spring, but the increase was 0.52 mg/dl lower for farmers receiving MUN results than for those who did not participate in the program. Farmers who indicated they increased dietary crude protein (CP) due to low MUN started with MUN values that were 3 mg/dl below target but ended with target values. Farmers who indicated that they decreased CP due to high MUN began the project with high MUN but decreased it by 1 mg/dl compared to non-participating farmers. At the end of the project, 30% of farmers responding to a follow-up survey indicated they would use MUN analysis in the future. Providing MUN results and interpretive information to farmers was documented to change feeding practices and subsequent MUN results. 相似文献
9.
Analysis of milk urea nitrogen and lactose and their effect on longevity in Canadian dairy cattle 总被引:1,自引:0,他引:1
The aim of this study was to assess the phenotypic level of lactose and milk urea nitrogen concentration (MUN) and the association of these traits with functional survival of Canadian dairy cattle using a Weibull proportional hazards model. A total of 1,568,952 test-day records from 283,958 multiparous Holstein cows from 4,758 herds, and 79,036 test-day records from 26,784 multiparous Ayrshire cows from 384 herds, calving from 2001 to 2004, were used for the phenotypic analysis. The overall average lactose percentage and MUN for Ayrshires were 4.49% and 12.20 mg/dL, respectively. The corresponding figures for Holsteins were 4.58% and 11.11 mg/dL. Concentration of MUN increased with parity number, whereas lactose percentage decreased in later parities. Data for survival analysis consisted of 39,536 first-lactation cows from 1,619 herds from 2,755 sires for Holsteins and 2,093 cows in 228 herds from 157 sires for Ayrshires. Test-day lactose percentage and MUN were averaged within first lactation. Average lactose percentage and MUN were grouped into 5 classes (low, medium-low, medium, medium-high, and high) based on mean and standard deviation values. The statistical model included the effects of stage of lactation, season of production, the annual change in herd size, type of milk-recording supervision, age at first calving, effects of milk, fat, and protein yields calculated as within herd-year-parity deviations, herd-year-season of calving, lactose percentage and MUN classes, and sire. The relative culling rate was calculated for animals in each class after accounting for the remaining effects included in the model. Results showed that there was a statistically significant association between lactose percentage and MUN in first lactation with functional survival in both breeds. Ayrshire cows with high and low concentration of MUN tended to be culled at a higher than average rate. Instead, Holstein cows had a linear association, with decreasing relative risk of culling with increasing levels of MUN concentration. The relationship between lactose percentage and survival was similar across breeds, with higher risk of culling at low level of lactose, and lower risk of culling at high level of lactose percentage. 相似文献
10.
The association between milk urea nitrogen and DHI production variables in western commercial dairy herds 总被引:2,自引:0,他引:2
A retrospective observational study was conducted using data from Dairy Herd Improvement monthly tests to investigate the association between milk urea nitrogen (MUN) concentration and milk yield, milk protein, milk fat percentage, SCC, and parity for commercial Holstein and Jersey herds in Utah, Idaho, and Montana. Mean MUN for Holstein cows was 15.5 mg/ dl (5.5 mmol/L) MUN and 14.1 mg/dl (5.0 mmol/L) for Jersey cows. Mean MUN, categorized by 30-d increments of days in milk (DIM), paralleled changes in milk values and followed a curvilinear shape. For Holstein cows, concentrations of MUN were different among lactation groups 1, 2, and 3+ for the first 90 DIM for Holsteins. Overall, concentrations of MUN were lower during for the first 30 DIM compared with all other DIM categories for both Holstein and Jersey cows. Multivariate regression models of MUN by milk protein showed that as the milk protein percentage increased, MUN concentration decreased; however, models for Jersey cows showed that MUN did not decrease significantly until above 3.4% milk protein. Milk fat percentage also decreased as MUN increased, but by only 1 mg/dl MUN over the range of 2.2 to 5.8% milk fat. Somatic cell count showed a negative relationship with MUN. Holstein cows with milk protein percentage >3.2% had lower MUN compared with cows having milk protein <3.2% for milk yields from 27.3 to 54.5 kg/d and lower than cows having a milk protein <3.0% for milk yield of 54.5 to 63.6 kg/d. In Jersey cows, MUN concentrations were not different among milk protein percentage categorized by milk yield. This study found that MUN was inversely associated with milk protein percentage and paralleled change in milk yield over time. 相似文献
11.
Genome-wide scan to detect quantitative trait loci for milk urea nitrogen in Dutch Holstein-Friesian cows 总被引:1,自引:0,他引:1
A.C. Bouwman G.C.B. Schopen H. Bovenhuis M.H.P.W. Visker J.A.M. van Arendonk 《Journal of dairy science》2010,93(7):3310-3319
Studies have reported genetic variation in milk urea nitrogen (MUN) between cows, suggesting genetic differences in nitrogen efficiency between cows. In this paper, the results of a genome-wide scan to identify quantitative trait loci (QTL) that contribute to genetic variation in MUN and MUN yield are presented. Two to 3 morning milk samples were taken from 1,926 cows, resulting in 5,502 test-day records. Test-day records were corrected for systematic environmental effects using a repeatability animal model. Averages of corrected phenotypes of 849 cows, belonging to 7 sire families, were used in an across-family multimarker regression approach to detect QTL. Animals were successfully genotyped for 1,341 single nucleotide polymorphisms. The QTL analysis resulted in 4 chromosomal regions with suggestive QTL: Bos taurus autosomes (BTA) 1, 6, 21, and 23. On BTA 1, 2 suggestive QTL affecting MUN were detected at 60 and 140 cM. On BTA 6, 1 suggestive QTL affecting both MUN and MUN yield was detected at 103 cM. On BTA 21, 1 suggestive QTL affecting MUN yield was detected at 83 cM. On BTA 23, 1 suggestive QTL affecting MUN was detected at 54 cM. Quantitative trait loci for MUN and MUN yield were suggestive and each explained between 2 and 3% of the phenotypic variance. 相似文献
12.
Genetic and phenotypic relationships among milk urea nitrogen, fertility, and milk yield in holstein cows 总被引:2,自引:0,他引:2
König S Chang YM von Borstel UU Gianola D Simianer H 《Journal of dairy science》2008,91(11):4372-4382
The aims of the study were to evaluate the relationships among milk urea nitrogen and nonreturn rates at the phenotypic scale, and to estimate genetic parameters among milk urea nitrogen, milk yield, and fertility traits in the early period of lactation. Milk yield, protein percentage, the interval from calving to first service, and 56- and 90-d nonreturn rates were available from 73,344 Holstein cows from 2,178 different herds located in a region in northwestern Germany. Generalized linear models with a logit link function were applied to assess the phenotypic relationships. Bivariate threshold-threshold, linear-threshold, and linear-linear models, fitted in a Bayesian framework, were used to estimate genetic correlations among traits. Milk yield, protein percentage, and milk urea nitrogen were means from test-day 1 (on average 20.8 d in milk) and test-day 2 (on average 53.1 d in milk) after calving. An increase in milk urea nitrogen was associated with decreasing 56-d nonreturn rates on the phenotypic scale. At fixed levels of milk urea nitrogen, greater values of protein percentage, indicating a surplus of energy in the feed, were positively associated with nonreturn rates. Heritabilities were 0.03 for 56- and 90-d nonreturn rates, 0.07 for interval from calving to first service, 0.13 for milk urea nitrogen, and 0.19 for milk yield. Service sire explained a negligible part (below 0.15%) of the total variance for nonreturn rates. Genetic correlations between the interval from calving to first service and nonreturn rates were close to zero. The genetic correlation between nonreturn rates was 0.94, suggesting that a change from nonreturn after 90 d to nonreturn after 56 d in the national genetic evaluation would not result in any loss of information. The genetic correlation between milk yield and nonreturn after 56 d was −0.31, and between milk yield and calving to first service was 0.14, both indicating an antagonistic relationship between production and reproduction. The genetic correlation between milk yield and milk urea nitrogen was 0.44, reflecting an energy deficiency in early lactation. The genetic correlations between milk urea nitrogen and nonreturn rates were too weak (−0.19 for 56-d nonreturn rate, and −0.23 for 90-d nonreturn rate) to justify the use of milk urea nitrogen as an additional trait in genetic selection for fertility, as demonstrated by selection index calculations. 相似文献
13.
Short communication: Evaluation of milk urea nitrogen as a management tool to reduce ammonia emissions from dairy farms 总被引:1,自引:0,他引:1
The purpose of this study was to compile and evaluate relationships between feed nitrogen (N) intake, milk urea N (MUN), urinary urea N (UUN), and ammonia (NH3) emissions from dairy farms to aid policy development. Regression relationships between MUN, UUN, and NH3 emissions were compiled from studies conducted in Wisconsin, California, and the Netherlands. Relative reductions in NH3 emissions were calculated as percentage decreases in NH3 emissions associated with a baseline MUN level of 14 mg/dL (prevailing industry average). For 3 studies with cows in stanchion barns, relative NH3 emission reductions of 10.3 to 28.2% were obtained when MUN declined from 14 to 10 mg/dL. Similarly, analyses of 2 freestall studies provided relative NH3 emission reductions of 10.5 to 33.7% when MUN levels declined from 14 to 10 mg/dL. The relative reductions in NH3 emissions from both stanchion and freestall barns can be associated directly with reductions in UUN excretion, which can be determined using MUN. The results of this study may help create new awareness, and perhaps eventual industry-based incentives, for management practices that enhance feed N use efficiency and reduce MUN, UUN, and NH3 emissions from dairy farms. 相似文献
14.
An evaluation of milk urea nitrogen (MUN) as a diagnostic of protein feeding in dairy cows was performed using mean treatment data (n = 306) from 50 production trials conducted in Finland (n = 48) and Sweden (n = 2). Data were used to assess the effects of diet composition and certain animal characteristics on MUN and to derive relationships between MUN and the efficiency of N utilization for milk production and urinary N excretion. Relationships were developed using regression analysis based on either models of fixed factors or using mixed models that account for between-experiment variations. Dietary crude protein (CP) content was the best single predictor of MUN and accounted for proportionately 0.778 of total variance [MUN (mg/dL) = -14.2 + 0.17 x dietary CP content (g/kg dry matter)]. The proportion of variation explained by this relationship increased to 0.952 when a mixed model including the random effects of study was used, but both the intercept and slope remained unchanged. Use of rumen degradable CP concentration in excess of predicted requirements, or the ratio of dietary CP to metabolizable energy as single predictors, did not explain more of the variation in MUN (R(2) = 0.767 or 0.778, respectively) than dietary CP content. Inclusion of other dietary factors with dietary CP content in bivariate models resulted in only marginally better predictions of MUN (R(2) = 0.785 to 0.804). Closer relationships existed between MUN and dietary factors when nutrients (CP to metabolizable energy) were expressed as concentrations in the diet, rather than absolute intakes. Furthermore, both MUN and MUN secretion (g/d) provided more accurate predictions of urinary N excretion (R(2) = 0.787 and 0.835, respectively) than measurements of the efficiency of N utilization for milk production (R(2) = 0.769). It is concluded that dietary CP content is the most important nutritional factor influencing MUN, and that measurements of MUN can be utilized as a diagnostic of protein feeding in the dairy cow and used to predict urinary N excretion. 相似文献
15.
Effects of milk urea nitrogen and other factors on probability of conception of dairy cows 总被引:3,自引:0,他引:3
The objective of this study was to evaluate the relationships between milk urea nitrogen (MUN) and other factors and the probability of conception in dairy cows. Data were retrieved from the Lancaster Dairy Herd Improvement Association (DHIA). A total of 713 dairy herds and 10,271 dairy cows were included in the study. Logistic regression was used to determine the within-herd effects of MUN, milk production, lactation number, and breeding season on the probability of conception for each of 3 services. Within herds, MUN displayed a slight negative association with probability of conception at first service. For example, there was a 2- to 4-percentage unit decrease in conception rate at first service with a 10-mg/dL increase in MUN. In among-herd regression analysis, there was no effect of MUN on probability of conception. These results suggest that MUN may be related to conditions affecting reproduction of individual cows within a herd. Diet formulation usually would affect MUN equally among all cows at a similar stage of lactation in a herd. Because there was no effect of MUN among herds, diet formulation did not appear to affect conception rate. 相似文献
16.
The aim of this study was to estimate genetic parameters for test-day milk urea nitrogen (MUN) and its relationships with milk production traits. Three test-day morning milk samples were collected from 1,953 Holstein-Friesian heifers located on 398 commercial herds in the Netherlands. Each sample was analyzed for somatic cell count, net energy concentration, MUN, and the percentage of fat, protein, and lactose. Genetic parameters were estimated using an animal model with covariates for days in milk and age at first calving, fixed effects for season of calving and effect of test or proven bull, and random effects for herd-test day, animal, permanent environment, and error. Coefficient of variation for MUN was 33%. Estimated heritability for MUN was 0.14. Phenotypic correlation of MUN with each of the milk production traits was low. The genetic correlation was close to zero for MUN and lactose percentage (−0.09); was moderately positive for MUN and net energy concentration of milk (0.19), fat yield (0.41), protein yield (0.38), lactose yield (0.22), and milk yield (0.24), and percentage of fat (0.18), and percentage of protein (0.27); and was high for MUN and somatic cell score (0.85). Herd-test day explained 58% of the variation in MUN, which suggests that management adjustments at herd-level can reduce MUN. This study shows that it is possible to influence MUN by herd practice and by genetic selection. 相似文献
17.
Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle 总被引:1,自引:0,他引:1
Miglior F Sewalem A Jamrozik J Bohmanova J Lefebvre DM Moore RK 《Journal of dairy science》2007,90(5):2468-2479
The objective of this research was to estimate heritabilities of milk urea nitrogen (MUN) and lactose in the first 3 parities and their genetic relationships with milk, fat, protein, and SCS in Canadian Holsteins. Data were a random sample of complete herds (60,645 test day records of 5,022 cows from 91 herds) extracted from the edited data set, which included 892,039 test-day records of 144,622 Holstein cows from 4,570 herds. A test-day animal model with multiple-trait random regression and the Gibbs sampling method were used for parameter estimation. Regression curves were modeled using Legendre polynomials of order 4. A total of 6 separate 4-trait analyses, which included MUN, lactose, or both (yield or percentage) with different combinations of production traits (milk, fat and protein yield, fat and protein percentages, and somatic cell score) were performed. Average daily heritabilities were moderately high for MUN (from 0.384 to 0.414), lactose kilograms (from 0.466 to 0.539), and lactose percentage (from 0.478 to 0.508). Lactose yield was highly correlated with milk yield (0.979). Lactose percentage and MUN were not genetically correlated with milk yield. However, lactose percentage was significantly correlated with somatic cell score (−0.202). The MUN was correlated with fat (0.425) and protein percentages (0.20). Genetic correlations among parities were high for MUN, lactose percentage, and yield. Estimated breeding values (EBV) of bulls for MUN were correlated with fat percentage EBV (0.287) and EBV of lactose percentage were correlated with lactation persistency EBV (0.329). Correlations between lactose percentage and MUN with fertility traits were close to zero, thus diminishing the potential of using those traits as possible indicators of fertility. 相似文献
18.
The aim of this project was to investigate the relationship of milk urea nitrogen (MUN) with 3 milk production traits [milk yield (MY), fat yield (FY), protein yield (PY)] and 6 fertility measures (number of inseminations, calving interval, interval from calving to first insemination, interval from calving to last insemination, interval from first to last insemination, and pregnancy at first insemination). Data consisted of 635,289 test-day records of MY, FY, PY, and MUN on 76,959 first-lactation Swedish Holstein cows calving from 2001 to 2003, and corresponding lactation records for the fertility traits. Yields and MUN were analyzed with a random regression model followed by a multi-trait model in which the lactation was broken into 10 monthly periods. Heritability for MUN was stable across lactation (between 0.16 and 0.18), whereas MY, FY, and PY had low heritability at the beginning of lactation, which increased with time and stabilized after 100 d in milk, at 0.47, 0.36, and 0.44, respectively. Fertility traits had low heritabilities (0.02 to 0.05). Phenotypic correlations of MUN and milk production traits were between 0.13 (beginning of lactation) and 0.00 (end of lactation). Genetic correlations of MUN and MY, FY, and PY followed similar trends and were positive (0.22) at the beginning and negative (−0.15) at the end of lactation. Phenotypic correlations of MUN and fertility were close to zero. A surprising result was that genetic correlations of MUN and fertility traits suggest a positive relationship between the 2 traits for most of the lactation, indicating that animals with breeding values for increased MUN also had breeding values for improved fertility. This result was obtained with a random regression model as well as with a multi-trait model. The analyzed group of cows had a moderate level of MUN concentration. In such a population MUN concentration may increase slightly due to selection for improved fertility. Conversely, selection for increased MUN concentration may improve fertility slightly. 相似文献
19.
Dietary protein and salt affect the concentration of milk urea nitrogen (MUN; mg of N/dL) and the relationship between MUN and excretion of urea nitrogen in urine (UUN; g of N/d) of dairy cattle. The aim of the present study was to examine the effects of dietary protein and sodium chloride (NaCl) intake separately, and their interaction, on MUN and UUN, on the relationship between UUN and MUN, on renal recycling of urea, and on urea transfer to the gastrointestinal tract. Twelve second-parity cows (body weight of 645 ± 37 kg, 146 ± 29 d in milk, and a milk production of 34.0 ± 3.28 kg/d), of which 8 were previously fitted with a rumen cannula, were fitted with catheters in the urine bladder and jugular vein. The experiment had a split-plot arrangement with dietary crude protein (CP) content as the main plot factor [116 and 154 g of CP/kg of dry matter (DM)] and dietary NaCl content as the subplot factor (3.1 and 13.5 g of Na/kg of DM). Cows were fed at 95% of the average ad libitum feed intake of cows receiving the low protein diets. Average MUN and UUN were, respectively, 3.90 mg of N/dL and 45 g of N/d higher for the high protein diets compared with the low protein diets. Compared with the low NaCl diets, MUN was, on average, 1.74 mg of N/dL lower for the high NaCl diets, whereas UUN was unaffected. We found no interaction between dietary content of protein and NaCl on performance characteristics or on MUN, UUN, urine production, and renal clearance characteristics. The creatinine clearance rate was not affected by dietary content of protein and NaCl. Urea transfer to the gastrointestinal tract, expressed as a fraction of plasma urea entry rate, was negatively related to dietary protein, whereas it was not affected by dietary NaCl content. We found no interaction between dietary protein and NaCl content on plasma urea entry rate and gastrointestinal urea entry rate or their ratio. The relationship between MUN and UUN was significantly affected by the class variable dietary NaCl content: UUN = −17.7 ± 7.24 + 10.09 ± 1.016 × MUN + 2.26 ± 0.729 × MUN (for high NaCl); R2 = 0.85. Removal of the MUN × NaCl interaction term lowered the coefficient of determination from 0.85 to 0.77. In conclusion, dietary protein content is positively related to MUN and UUN, whereas dietary NaCl content is negatively correlated to MUN but NaCl content is not related to UUN. We found no interaction between dietary protein and NaCl content on performance, MUN, UUN, or renal urea recycling, nor on plasma urea entry rate and urea transfer to the gastrointestinal tract. For a proper interpretation of the relationship between MUN and UUN, the effect of dietary NaCl should be taken into account, but we found no evidence that the effect of dietary NaCl on MUN is dependent on dietary protein content. 相似文献
20.
M. Aguilar M.D. Hanigan H.A. Tucker B.L. Jones S.K. Garbade M.L. McGilliard C.C. Stallings K.F. Knowlton R.E. James 《Journal of dairy science》2012
Milk urea nitrogen (MUN) is correlated with N balance, N intake, and dietary N content, and thus is a good indicator of proper feeding management with respect to protein. It is commonly used to monitor feeding programs to achieve environmental goals; however, genetic diversity also exists among cows. It was hypothesized that phenotypic diversity among cows could bias feed management decisions when monitoring tools do not consider genetic diversity associated with MUN. The objective of the work was to evaluate the effect of cow and herd variation on MUN. Data from 2 previously published research trials and a field trial were subjected to multivariate regression analyses using a mixed model. Analyses of the research trial data showed that MUN concentrations could be predicted equally well from diet composition, milk yield, and milk components regardless of whether dry matter intake was included in the regression model. This indicated that cow and herd variation could be accurately estimated from field trial data when feed intake was not known. Milk urea N was correlated with dietary protein and neutral detergent fiber content, milk yield, milk protein content, and days in milk for both data sets. Cow was a highly significant determinant of MUN regardless of the data set used, and herd trended to significance for the field trial data. When all other variables were held constant, a percentage unit change in dietary protein concentration resulted in a 1.1 mg/dL change in MUN. Least squares means estimates of MUN concentrations across herds ranged from a low of 13.6 mg/dL to a high of 17.3 mg/dL. If the observed MUN for the high herd were caused solely by high crude protein feeding, then the herd would have to reduce dietary protein to a concentration of 12.8% of dry matter to achieve a MUN concentration of 12 mg/dL, likely resulting in lost milk production. If the observed phenotypic variation is due to genetic differences among cows, genetic choices could result in herds that exceed target values for MUN when adhering to best management practices, which is consistent with the trend for differences in MUN among herds. 相似文献