首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of liquefied petroleum gas (LPG) to the CO2 stream reduces interfacial tension (IFT) between the injected gas and the reservoir oil, and it changes the gas-liquid relative permeability by making it more water-wet, which affects not only the oil mobility, but also the vertical sweep efficiency. The reduction of the IFT decreases vertical sweep efficiency because it enhances the relative permeability of the solvent, resulting in an increase in the viscous gravity number. For CO2-LPG enhanced oil recovery (EOR), oil recovery is enhanced by up to 47%, as compared to CO2 flooding, when the relative permeability change caused by the IFT is not considered. By taking the vertical sweep-out caused by IFT and relative permeability change into consideration, this increase is reduced to 40%. These results indicate the importance of considering the relative permeability and IFT change when predicting the performance of the CO2-LPG EOR process.  相似文献   

2.
The objective of this study is to prove that altering the wettability of reservoir rocks by two surfactants (hexadecyl amino benzene sulfonic acid [HABSA] and cationic hexa decyl trimethyl ammonum bromide [CTAB]). Changing the wettability to preferentially water-wet condition will reduce the residual oil saturation (Sor). Because of reducing Sor, the percentage of recovered oil is increased. All surfactants were tested for their ability to alter the wettability of reservoir rocks. This alteration was measured based on the contact angle methods. Results of this study show that both amphoteric HABSA and CTAB surfactants alter the wettability of carbonate rocks from oil-wet to water-wet, while CTAB alters the wettability from oil-wet to water-wet more than HABSA. Also, recovery factor in CTAB injection was more than HABSA injection. Ultimately, the results show that the CTAB surfactant is more effective than HABSA surfactant to alter the wettability and improve oil recovery from carbonate reservoirs.  相似文献   

3.
《能源学会志》2014,87(4):306-313
Sequestrating CO2 in reservoirs can substantially enhance oil recovery and effectively reduce greenhouse gas emission. To evaluate the potential of CO2 enhanced oil recovery (EOR) and sequestration for Yanchang Oilfield in China, a screening standard which was suitable for CO2-EOR and sequestration in Yanchang Oilfield was proposed based on its characteristics of strong heterogeneity, high water content and severe fluid channeling after water flooding. In addition, an efficient calculation method – stream tube simulation method was presented to figure out CO2 sequestration coefficient and oil recovery factor. After screening and evaluating, it turned out that 148 out of 176 blocks in 22 oilfields were suitable for CO2-EOR and sequestration. CO2 flooding after water flooding can produce 180.21 × 106 t more crude oil and sequestrate 223.38 × 106 t CO2. The average incremental oil recovery rate of miscible reservoirs was 12.49% and the average CO2 sequestration coefficient was 0.27 t/t while the two values were 6.83% and 0.18 t/t for immiscible reservoirs. There are comparatively more reservoirs that are suitable for CO2-EOR and sequestration in Yanchang Oilfield than normal, which can obviously enhance oil recovery and means a great potential for CO2 sequestration. CO2-EOR and sequestration in Yanchang Oilfield has a bright application prospect.  相似文献   

4.
Water injection for both pressure maintenance and oil displacement is the most important secondary recovery method in sandstones. It has also been implemented with success in a few carbonate reservoirs, but because the most carbonate reservoirs worldwide are characterized as neutral to preferential oil-wet, normal waterflooding is usually not successful as an enhanced oil recovery (EOR) technique. It has been proved that seawater can be used as an EOR fluid for hot, fractured carbonate oil reservoirs since it is able to modify the wetting conditions and to enhance the oil recovery. The potential determining ions in seawater such as Ca2+, Mg2+, and SO42- played a crucial role in altering the wettability from oil-wet to more water-wet condition because of their reactivity towards the carbonate surface. In this paper, the potential of low-salinity brine to enhance the oil recovery has been studied. Four flooding tests were conducted on both limestone cores containing anhydrite and chalk core containing no sulfate. It is observed that low-salinity brine had only effect on rocks containing anhydrite. The dissolution of anhydrite, CaSO4, which is the source for SO42-, is depending on salinity/composition of brine and the temperature. The dissolution of anhydrite normally increases as the temperature decreases. Lowering the salinity of injection brine increases the reactivity of the surface-active ions SO42- and Ca2+.  相似文献   

5.
This article put forward a theoretical system, which is used to analyze co-optimization of CO2 sequestration and enhanced oil recovery by using the methods or theories including the design of experiments, numerical simulation, net present value, and the response surface methods. A CO2 flooding operation in an immiscible water-alternating-gas process of Shanbei extra-low permeability reservoir was estimated preliminarily by using the methods proposed in this article. The result shows that optimized values obtained from predicted values were in good agreement with the values obtained from the simulation model and it is possible to optimize a coupled CO2 sequestration and enhanced oil recovery project.  相似文献   

6.
This study investigated capillary-trapped CO2 depending on the consideration of hysteresis effect in relative permeability for various water-alternation-gas (WAG) operating conditions to ascertain the oil production process. From the simulation results of CO2 WAG flooding method, the trapped CO2 led to prevent water-flow, in which CO2 acts as a gas blocker near the well. It caused the injection pressure increase during water injection period. As the trapped CO2 in pores increased, the reservoir pressure was also increased and maintained above minimum miscibility pressure (MMP). Ultimately, it was concluded that the reservoir was kept under miscible conditions throughout WAG process, reducing residual oil and increasing oil recovery.  相似文献   

7.
In an endeavour to improve not only the thermal shrinkage but also the electrochemical performance of separators in lithium-ion batteries, a novel composite separator is developed, i.e., a close-packed SiO2/poly(methyl methacrylate) (PMMA) binary nanoparticles-coated polyethylene (PE) separator. The introduction of SiO2 nanoparticles to the coating layer effectively suppresses thermal shrinkage of the composite separator. In contrast to a SiO2/PMMA coating layer having a film-shaped PMMA binder, the SiO2/PMMA binary nanoparticle coating layer employs PMMA particles as a binder. As a consequence, a highly porous structure, i.e., well-connected interstitial voids, is formed between the binary SiO2 and PMMA nanoparticles. The unique porous morphology allows favourable liquid electrolyte wettability and facile ionic conduction, which play a crucial role in improving cell performance such as the discharge capacity and the C-rate capability of the composite separator.  相似文献   

8.
In this research, utilizing the reservoir and produced oil data, different enhanced oil recovery (EOR) techniques known as in-situ combustion, CO2 flooding, and steam flooding were applied for Ashal’cha oil field in Republic of Tatarstan, Russia. For this purpose, In-Situ Combustion Predictive Model (ICPM), CO2 Miscible Flood Predictive Model (CO2PM) and Steam-flood Predictive Model (SFPM) are used. In addition to oil recovery, economic analysis of the discussed EOR applications was also conducted. By using the oil price forecast for 10 years, each EOR method is analyzed using their expenses and outcomes separately. Comparison among the EOR applications regarding the oil production, and economic feasibility was also given. Taking the reservoir and produced oil characteristics, oil production rate and economical payout time into account, it was observed that in-situ combustion is the most feasible and practical EOR method for Ashal’cha oil field.  相似文献   

9.
Geological storage has been proposed as a new technology to temporarily store significant amounts of hydrogen (H2) gas in depleted gas reservoirs, underground salt caverns, or saline aquifers. Often, such subsurface reservoirs naturally contain trace amounts of organic acids, and these compounds can considerably alter the wettability of reservoir rocks, causing them to become less water-wet. We carried out Molecular Dynamics (MD) simulations of contact angles in a quartz-brine-H2 system to evaluate wettability in realistic subsurface situations. MD simulations suggest that Humic acid makes quartz more hydrophobic, which can affect the overall behaviour of the storage reservoir. For the first time, this effect was experimentally investigated for a natural sandstone reservoir from the South West Hub Project, i.e., the Lesueur Sandstone (LS) formation. Multi-stage core flooding experiments were conducted on the same LS plug to investigate the impact of wettability alteration on initial and residual hydrogen saturation/trapping at depth. First, consecutive brine-H2 drainage-imbibition cycles were carried out on the natural sample; the result indicated that the rock-brine-H2 system was essentially water-wet. Then, the sample was aged in Humic acid with a molarity of 10−2 M for 42 days at 5 °C and 0.1 MPa. The wettability of the storage system shifted toward a less water-wet state, i.e., more hydrophobic. As a result of Humic acid ageing, the initial hydrogen saturation reduced from 29% to 15%, and the residual hydrogen trapping reduced from 23% to 11%. This is attributed to a change induced in the capillary force (i.e., snap-off) controlled by wettability and pore size. In addition, the wettability change induced by Humic acid increased the hydrogen recovery rate from 20.7% to 26.7%.  相似文献   

10.
A great deal of oil field is currently produced using water flooding and the water cut has reached a high level, which requires enhanced oil recovery (EOR) techniques to improve the recovery. Surfactant-polymer (SP) flooding is the combination of surfactant flooding and polymer flooding. The polymer is added to increase the viscosity and viscoelasticity of the fluid while the surfactant is included to decrease the oil–water interfacial tension and change the wettability. Although the mechanism of SP flooding has been deeply investigated, the application of SP flooding on a specific oil field requires the selection of optimal SP system. Therefore, for the first time, we performed a series of experiments to determine the optimal SP system for high water-cut oil field. In the injection capability experiment, we observe that the SP system is injected into the core with less resistance compared with single polymer solution. In the flooding experiment, regardless of the polymer types, the improvement of recovery becomes significant when the injected PVs increases. SP flooding shows the higher improvement of recovery compared with single polymer flooding or surfactant flooding. Based on the performance of recovery improvement, we recommend the optimal SP system for the studied case is the combination of DQ-TSRP01 polymer and surfactant. The optimal injection parameters of this SP system are 1500 mg/L polymer concentration, 0.3 injection PV and the injection timing of 96% water cut. The finding of this study can help for better understanding of the application of SP flooding in high water-cut oil field production.  相似文献   

11.
Abstract

The CO2 immiscible process is a potentially viable method of enhanced oil recovery (EOR) for heavy oil reservoirs. In an immiscible CO2 process, part of the injected CO2 is absorbed into the reservoir fluids and part forms a free-gas phase in the reservoir. Three groups of well configurations were mainly used: (1) vertical injection and vertical production wells, (2) vertical injection and horizontal production wells, and (3) horizontal injection and horizontal production wells. In immiscible CO2 injection, highest recovery was obtained by vertical injection-horizontal production (VI-HP), followed by vertical injection-vertical production (VI-VP), and the least by horizontal injection-horizontal production (HI-HP). In VI-HP well configuration, the best recovery was obtained as 15.1% OOIP. In continuous CO2 injection experiments, oil recovery for the VI-HP well configuration was higher than that of the other well configurations. The lowest ultimate recovery was obtained from HI-HP well configuration. The distance between the horizontal injector and horizontal producer was another important factor for the displacement of oil. In all runs, CO2 breakthrough occurred very early, showing the dominance of viscous forces and relatively small effect of mass transfer between CO2 and oil. The total oil recovery varied considerably because of the differences in injection rates and because of the unstable displacement. As a whole, oil recovery increased with an increase in the injection rate of CO2. The cumulative gas-oil ratio (GOR) appeared to be sensitive to the gas injection rate for all well configurations. An increase in oil recovery with injection rate during initial stages of the runs was affected by the cumulative GOR.  相似文献   

12.
Silica supported Ni catalyst is highly active for the CO2 reforming of methane but it has poor stability due to coke formation. In this work, a glow discharge plasma was applied for the decomposition of nickel nitrate on the SiO2 support, followed by thermal calcination in air. The plasma treatment enhances the interactions between the Ni particles and the silica and significantly improves the Ni dispersion. The plasma-treated Ni/SiO2 catalyst exhibits comparable activity to the Ni/SiO2 catalyst prepared by the thermal method without plasma treatment. The coke resistance of the Ni/SiO2 catalyst is significantly enhanced by the plasma treatment.  相似文献   

13.
A Pd/SiO2-nanoparticles (NPs)/AlGaN metal-oxide-semiconductor (MOS) structure is used to fabricate interesting Schottky diode-type hydrogen sensors. The employment of SiO2-NPs could effectively increase the specific surface area of Pd catalytic metal and the Schottky barrier height. Good hydrogen sensing performance is obtained. Experimentally, as compared to a conventional Pd/AlGaN MS diode, a significant 34.5-fold improvement on hydrogen sensing response is obtained under an introduced 1% H2/air gas at 300 K when a 10 wt% concentration of SiO2-NPs is employed in the studied device. Yet, the increase in SiO2-NP concentration relatively deteriorates the ability to detect very low hydrogen concentration levels (≦1 ppm H2/air). In addition, the increase in SiO2-NP concentration creates a decrease and increase on response and recovery time constants of transient behaviors, respectively.  相似文献   

14.
Considering the promising application of microbial fuel cells (MFCs) in the wastewater treatment, the inherent solid particles in the wastewater may affect the MFC performance. In this paper, the effect of inert particle concentration on the operation of MFCs is investigated by adding silicon dioxide (SiO2) particles into the anolyte. The results show that the existing SiO2 particles in the anolyte result in a decreased active biomass and a reduced electrochemical activity of the biofilm. The anode ohmic resistance is almost the same for MFCs with various SiO2 particle concentrations in the anolyte, while an increase in the charge transfer resistance is observed. A small amount of inert particles have little influence on the MFC. However, when the MFC is operated with the anolyte containing more than 500 mg L−1 SiO2 particles, the performance decreases significantly due to the low electrochemical activity and high internal resistance of the anode.  相似文献   

15.
The approach of utilizing combustion synthesis to make fine particles of SiO2, Al2O3 and TiO2 is a quite modern technology. Through the chemical reaction in post-flame region, fine SiO2 particles can be formed with high purity on plate surface. Therefore, the combustion synthesis of SiO2 powders is an important area for further research and development, especially for the application of SiO2 in the semiconductor industry. This investigation proposes an experimental approach (i.e., a gas-phase combustion synthesis) using two different kinds of organic compounds, Hexamethyldisilazane (HMDSA) and Hexamethyldisioxane (HMDSO), as the silicon precursors. A premixed gas burner is chosen with C3H8 as fuel, air as oxidant and part of the air was used as the carrying gas to entrain HMDSA/HMDSO vapor into the combustible mixture. Observations show that the C3H8/air flame changed color from a pale-blue flame to light yellow and then orange when different amounts of precursors were introduced. Through the chemical reaction in the post-flame region, fine SiO2 particles were formed in the gas phase and then quenched and collected on an aluminum flat plate. The objective of this paper is to study the effects of HMDSO and HMDSA concentrations and flame temperatures on the synthesis of SiO2 particles.  相似文献   

16.
Chemical flooding is technically feasible to increase oil recovery from depleted sandstone reservoirs with low pressure. Polymer-surfactant flooding is a potential process in the chemical flooding methods for enhanced oil recovery (EOR) in sandstone porous media. However, chemical additive cost and surfactant loss due to adsorption on the reservoir rock are the main concerns in this type of EOR processes. This paper presents adsorption equilibrium of a natural surfactant, Zyziphus spina-christi, onto a real sandstone reservoir. Batch adsorption experiments were carried out to figure out the impacts of adsorbent dose on adsorption performance. The equilibrium adsorption data were analyzed with two common adsorption models and it was found that the Freundlich model is a pretty good fit for adsorption equilibrium of Z. spina-christi based on the value of determination coefficient (R2). Results from this study are instructive for appropriate selection of surfactants in design of EOR processes and reservoir stimulation plans for sandstone reservoirs.  相似文献   

17.
Exploiting Ni-based catalysts with excellent low-temperature activity is significant for CO2 methanation, which is a promising route to CO2 utilization. In this work, a facile combustion-impregnation method was developed to prepare the SiO2 supported Ni catalysts. Small Ni particles (around 6 nm) and massive Ni–SiO2 interface could be obtained due to the “combustion” process. The H2-temperature programmed desorption (H2-TPD) revealed the existence of Ni–SiO2 interface and confirmed the high Ni dispersion obtained by this method, which were vital for the activation of reactant. Moreover, more medium basic sites which were beneficial for the CO2 activation could also be created. In comparison with the reference Ni/SiO2 catalyst prepared by the conventional impregnation method, much higher CO2 conversion (66.9%) and more superior selectivity to CH4 (94.1%) were achieved with the Ni/SiO2-Gly catalyst at 350 °C. Additionally, it was also found that glucose, citric acid and glycine were all effective fuels for this combustion-impregnation method, and the as-prepared catalysts all exhibited greatly improved low-temperature activity. Therefore, this work represents an important step toward developing Ni-based catalysts for CO2 methanation by a promising wide-used method.  相似文献   

18.
We confirmed here that the catalyst preparation methodologies have a significant effect on the activity and stability of Ni/SiO2 catalyst for methanation of syngas (CO + H2). Catalyst characterizations using X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR) and transmission electron microscope (TEM) were performed to investigate the structure and performance of the catalysts. The activity and stability of catalysts prepared by thermal decomposition and dielectric-barrier discharge (DBD) plasma decomposition of nickel precursor were compared. The plasma decomposition results in a high dispersion, an enhanced interaction between Ni and the SiO2 support, as well as less defect sites on Ni particles. Enhanced resistance to Ni sintering was also observed. In addition, the plasma prepared catalyst effectively inhibits the formation of inactive carbon species. As a result, the plasma prepared catalyst exhibits significantly improved activity with enhanced stability.  相似文献   

19.
《能源学会志》2014,87(4):289-296
Large amounts of mixed gas containing CO2 and hydrocarbon would be produced during CO2 flooding. Injecting the produced gas back to reservoir can not only make full use of CO2, but also can reduce air contamination. Taking produced crude oil and gases with different CO2 concentration from Jilin oilfield as examples in this paper, the phase behavior and the physical properties of live oil-gas system were measured with a visible PVT apparatus. In terms of oil viscosity reduction and swelling, the gas with high CO2 concentration was found to be substantially effective. Furthermore, comparative slim tube tests of the oil recovery performance using the five kinds of gases under different operating pressure were conducted in one-dimensional model. Results indicate that displacement efficiency increases linearly with the increasing CO2 content in the recycle gas; displacement efficiency increases with operating pressure under immiscible conditions. Re-injecting produced gas with relative high CO2 concentration back to reservoir is a method both time-saving and cost-effective.  相似文献   

20.
单存龙 《中外能源》2013,18(8):50-53
随着油田不断开发,大庆油田开发对象正逐渐从一类油层向渗透率低、黏土矿物含量较高的二、三类油层转变,但逐步进入工业化推广阶段的三元复合驱中碱的存在会加剧对二、三类油层的伤害,因此弱碱化、无碱化成为了复合驱技术的发展方向.针对大庆油田二类油层油水条件,采用AFS-A和AFS-B无碱表面活性剂复合体系开展了二元复合驱室内研究.实验结果表明:这两种无碱表面活性剂复合体系均可在活性剂浓度为0.05%~0.3%(质量分数)范围内与大庆原油形成10-3,N/m数量级界面张力,但AFS-B复合体系亲水性较强,AFS-A复合体系亲油性较强,AFS-B复合体系抗吸附性能要好于AFS-A复合体系;驱油效率方面,在水驱基础上,AFS-A复合体系化学驱平均采收率为17.28%,AFS-B复合体系化学驱平均采收率为19.81%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号