首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The pretreatment of rice husk by the wet air oxidation (WAO) technique was investigated by means of a statistically designed set of experiments. Reaction temperature, air pressure, and reaction time were the process parameters considered. WAO pretreatment of rice husk increased the cellulose content of the solid fraction by virtue of lignin removal and hemicellulose solubilization. The cellulose recovery was around 92%, while lignin recovery was in the tune of 8–20%, indicating oxidation of a bulk quantity of lignin. The liquid fraction was found to be rich in hexose and pentose sugars, which could be directly utilized as substrate for ethanol fermentation. The WAO process was optimized by multi-objective numerical optimization with the help of MINITAB 14 suite of statistical software, and an optimum WAO condition of 185 °C, 0.5 MPa, and 15 min was predicted and experimentally validated to give 67% (w/w) cellulose content in the solid fraction, along with 89% lignin removal, and 70% hemicellulose solubilization; 13.1 gl?1 glucose and 3.4 gl?1 xylose were detected in the liquid fraction. The high cellulose content and negligible residual lignin in the solid fraction would greatly facilitate subsequent enzymatic hydrolysis, and result in improved ethanol yields from rice husk.  相似文献   

2.
《Energy》1998,23(11):973-978
A method is proposed by which pyrolysis rates of biomass materials can be predicted from the species compositions in terms of the basic constituents (cellulose, hemicellulose and lignin) and their individual kinetic parameters. The activation energies, frequency factors and reaction orders for cellulose, hemicellulose and lignin have been determined in a conventional manner. The measured rates of pyrolysis of different biomass species (hazelnut, wood, olive husk and rice husk) compare well with literature data.  相似文献   

3.
使用蒸汽爆破法处理榨糖收贮玉米秸秆榨渣,观察不同蒸汽爆破压力和维压时间下纤维素、半纤维素、木质素(三大素)及纤维素酶水解得率的变化。榨渣三大素含量不同程度下降,半纤维素下降最多,其次是木质素,而纤维素下降最少。处理后进行的水解实验显示压力与维压时间的增加会导致纤维素水解酶得率有所提高,但压力增加对纤维素水解酶影响较小,维压时间对纤维素水解酶的影响较为突出。考虑经济成本的前提下选择1.2 MPa,10 min维压时间为最佳条件,其中纤维素含量为34.42%、半纤维素4.01%、木质素17.09%及纤维素酶水解得率为68.3%。  相似文献   

4.
The pyrolysis-catalytic steam reforming of six agricultural biomass waste samples as well as the three main components of biomass was investigated in a two stage fixed bed reactor. Pyrolysis of the biomass took place in the first stage followed by catalytic steam reforming of the evolved pyrolysis gases in the second stage catalytic reactor. The waste biomass samples were, rice husk, coconut shell, sugarcane bagasse, palm kernel shell, cotton stalk and wheat straw and the biomass components were, cellulose, hemicellulose (xylan) and lignin. The catalyst used for steam reforming was a 10 wt.% nickel-based alumina catalyst (NiAl2O3). In addition, the thermal decomposition characteristics of the biomass wastes and biomass components were also determined using thermogravimetric analysis (TGA). The TGA results showed distinct peaks for the individual biomass components, which were also evident in the biomass waste samples reflecting the existence of the main biomass components in the biomass wastes. The results for the two-stage pyrolysis-catalytic steam reforming showed that introduction of steam and catalyst into the pyrolysis-catalytic steam reforming process significantly increased gas yield and syngas production notably hydrogen. For instance, hydrogen composition increased from 6.62 to 25.35 mmol g?1 by introducing steam and catalyst into the pyrolysis-catalytic steam reforming of palm kernel shell. Lignin produced the most hydrogen compared to cellulose and hemicellulose at 25.25 mmol g?1. The highest residual char production was observed with lignin which produced about 45 wt.% char, more than twice that of cellulose and hemicellulose.  相似文献   

5.
农林废弃物成分分析及其综合利用前景展望   总被引:2,自引:1,他引:2  
选取杉木木屑、红木木屑、桦木木屑、水稻秸秆、油菜秸秆和稻壳等6种农林废弃物为原料,采用化学定量分析法测定了生物质原料中纤维素、半纤维素和木质素的含量;采用电感耦合等离子体光谱法测定了生物质原料中的金属离子含量.在此基础上,探讨了各类农林废弃物综合利用的发展前景.  相似文献   

6.
In this work, the effects of various pretreatments’ parameters on kenaf core fibre were analyzed statistically and optimized using Response Surface Methodology based on the total glucose yield. The chemical compositions of the pretreated fibres were examined to discuss the effect of pretreatment on the fibre hydrolysability comprehensively. The results showed that estimation model for each pretreatment of kenaf core fibre were polynomial equations. The optimum conditions for water, acid and alkali pretreatments were 170 °C for 45 min, 120 °C for 90 min in 2.0% H2SO4 solution and 140 °C for 60 min in 3.0% NaOH solution, respectively. Among the three pretreatments, water pretreatment achieved the highest total glucose yield (25.5%), followed by acid (20.0%) and alkali (18.2%) pretreatments. Based on chemical compositions analysis, both water and acid pretreatments were capable of eliminating almost 100% of hemicellulose with negligible removal of lignin while the alkali pretreatment removed both the lignin and hemicellulose more than 60%. This result revealed that the removal of hemicellulose showed greater influential in enhancing the enzymatic accessibility and hence, hydrolysability of kenaf core fibre.  相似文献   

7.
氨化水饱和预处理麦秸厌氧消化产气性能的研究   总被引:1,自引:0,他引:1  
试验以氨水为预处理试剂,研究在水饱和状态下,氨水添加量及负荷率对麦秸厌氧消化产气性能的影响。对氨化预处理前后麦秸的主要组分进行测定,采用傅立叶变换红外光谱(FTIR)对氨化水饱和预处理秸秆及秸秆中木素、纤维素和半纤维素的结构变化进行研究。结果表明,在3种负荷率下,氨化水饱和预处理后麦秸单位质量VS产气量分别提高了14%~23%,26%~36%和31%~45%。4%氨化预处理后的麦秸在65 g/L负荷率下获得最大377 mL/g的生物气产量。组分分析表明,氨化水饱和预处理可有效脱除39%~42%的半纤维素及11%~20%的纤维素,对木素含量影响较小。结构分析表明,氨化水饱和预处理可脱除细胞壁中的蜡质成分,使木素中部分官能团、纤维素中的氢键和糖苷键、半纤维素的部分氢键和糖单元之间的连接键发生断裂;从而使纤维素从木素的包裹中释放出来并发生溶胀,破坏其晶体结构;使半纤维素亲水性增强且更易于降解。这些秸秆内部结构的变化是提高麦秸厌氧消化产气性能的根本原因。  相似文献   

8.
以高粱秸秆为原料,分别研究酸、碱、氧化试剂与低温冻融联合预处理对高粱秸秆与沼泥混合厌氧发酵产甲烷的影响.试验结果表明:经过预处理后各试验组高粱秸秆组分含量比CK对照组均有显著变化(p<0.05),木质素去除率在29.85%~41.71%之间,纤维素相对含量提高率在10.08%~17.27%之间,半纤维素去除率在1.30...  相似文献   

9.
Napiergrass (Pennisetum purpureum Schum.) is a promising low cost raw material which does not compete with food prices, has attractive yields and an environmentally friendly farming. Dilute sulfuric acid pretreatment of napiergrass was effective to obtain high yields of sugars and low level of degradation by-products from hemicellulose. Detoxification with Ca(OH)2 removed inhibitors but showed sugars loss. An ethanol concentration of 21 g/L after 176 h was found from the hydrolyzate using Pichia stipitis NBRC 10063 (fermentation efficiency 66%). An additional alkaline pretreatment applied to the solid fraction remaining from the diluted acid pretreatment improved the lignin removal. The highest cellulose hydrolysis values were found with the addition of β-glucosidase and PEG 6000. The simultaneous hydrolysis and fermentation of the cellulosic fraction with Saccharomyces cerevisiae, 10% (w/v) solid concentration, β-glucosidase and PEG 6000, showed the highest ethanol concentration (24 g/L), and cellulose hydrolysis values (81%). 162 L ethanol/t of dry napiergrass were produced (overall efficiency of 52%): 128 L/t from the cellulosic fraction and 34 L/t from the hemicellulosic fraction.  相似文献   

10.
A new organosolv biomass fractionation process (Clean Fractionation, CF) for the separation of lignocellulosic raw material into cellulose, hemicellulose and lignin has been developed. The lignocellulosic material is separated with a ternary mixture of methyl isobutyl ketone, ethanol and water in the presence of an acid promoter, which selectively dissolves lignin and hemicellulose, leaving cellulose as an undissolved solid. The resulting single phase liquor is treated with water giving an organic phase containing lignin and an aqueous phase containing hemicellulose. For woody feedstocks, the yield of the cellulose fraction across all separations averaged 47.7 wt% (±1.1). Representative separations gave cellulose fractions with average Klason lignin contents of 2.0% at acid concentrations of 0.1 M H2SO4 or greater. Little or no galactose, mannose or arabinose is observed in the cellulose, and at an acid concentration of 0.2 M, average xylose contents as low as 0.22% were observed. Average glucan contents for representative cellulose samples of 92.7% were observed, and rose as high as 98.2% for separations using 0.2 M H2SO4. Glucan contents as high as 97% were also observed if the cellulose was bleached using either a QPD or QPDE sequence. The average yield of the lignin fraction was 18.3 wt%. Representative lignin samples gave an average Klason lignin value of 91% with selected lignin samples exhibiting residual sugar levels of <0.5%. The aqueous hemicellulose fraction contains a higher level of non-sugar components, but can be purified by ion exchange chromatography.  相似文献   

11.
深度共熔溶剂(DES)是一类可再生、对环境友好的新型混合溶剂体系,用于预处理木质纤维素生物质可有效去除半纤维素及木质素组分,并可保留较为完整的纤维素组分。本文综述DES预处理对木质纤维素生物质作用机制的研究进展。通常情况下,大部分DES对纤维素溶解性较差,但可改变纤维素的外貌形态;一些酸性DES对半纤维素具有良好的溶解性能;碱性DES及部分酸性DES对木质素具有优异的溶解性能,在预处理过程中木质素的结构发生解聚或缩合反应;三元DES体系在木质素提取、分离及回收等方面均展现出更多优势。DES对木质素的去除效果及作用机制受DES的构成、摩尔比、生物质类型及预处理条件如温度等多种因素的影响。理解DES在木质纤维素生物质预处理中结构与功能的关系,研究DES在预处理过程中对木质素及半纤维素去除的作用机制,有助于合理设计新的DES体系并为实现生物质三大组分的高效分离及转化奠定理论基础与技术指导。  相似文献   

12.
以杂交狼尾草为研究对象,采用四氢糠醇-硫酸体系在常压较低温度下进行预处理研究,优化该预处理体系得到最佳预处理条件为0.1 mol/L硫酸、反应温度120℃、反应时间2 h、固液比为1∶12,在此条件下残渣中纤维素、半纤维素的保留率分别为86.17%、9.01%,木质素脱除率为98.16%;对预处理残渣进行酶解,72 h时酶解率可达99.01%,比未处理原料的酶解率高2.6倍。通过使用扫描电镜、X射线衍射、红外光谱、热重分析等方法对预处理后残渣及原料的组成及结构进行分析测试,表明四氢糠醇-硫酸预处理能有效脱除木质素及半纤维素,破坏平整的原料表面结构,提高原料的酶解率。  相似文献   

13.
The concentration and type of free radicals from the decay (termination stage) of pyrolysis at slow and fast heating rates and at high temperatures (above 1000°C) in biomass char have been studied. A room-temperature electron spin resonance spectroscopy study was conducted on original wood, herbaceous biomass, holocelluloses, lignin and their chars, prepared at high temperatures in a wire mesh reactor, an entrained flow reactor, and a tubular reactor. The radical concentrations in the chars from the decay stage range up between 7·1016 and 1.5·1018 spins g−1. The results indicated that the biomass major constituents (cellulose, hemicellulose, lignin) had a minor effect on remaining radical concentrations compared to potassium and silica contents. The higher radical concentrations in the wheat straw chars from the decay stage of pyrolysis in the entrained flow reactor compared to the wood chars were related to the decreased mobility of potassium in the char matrix, leading to the less efficient catalytic effects of potassium on the bond-breaking and radical re-attachments. The high Si levels in the rice husk caused an increase in the char radical concentration compared to the wheat straw because the free radicals were trapped in a char consisting of a molten amorphous silica at heating rates of 103–104 K s−1. The experimental electron spin resonance spectroscopy spectra were analyzed by fitting to simulated data in order to identify radical types, based on g-values and line widths. The results show that at high temperatures, mostly aliphatic radicals (g = 2.0026–2.0028) and PAH radicals (g = 2.0027–2.0031) were formed.  相似文献   

14.
《能源学会志》2019,92(5):1348-1363
In order to understand the pyrolysis mechanism, reaction kinetic and product properties of biomass and select suitable agricultural and forestry residues for the generation desired products, the pyrolysis and catalytic pyrolysis characteristics of three main components (hemicellulose, cellulose, and lignin) of biomass were investigated using a thermogravimetric analyzer (TGA) with a fixed-bed reactor. Fourier transform infrared spectroscopy (FTIR) and elemental analysis were used for further characterization. The results showed that: the thermal stability of hemicellulose was the worst, while that of cellulose was higher with a narrow range of pyrolysis temperatures. Lignin decomposed over a wider range of temperatures and generated a higher char yield. After catalytic pyrolysis over HZSM-5 catalyst, the conversion ratio increased. The ratio for the three components was in the following order: lignincellulose < biomass < xylan. The Starink method was introduced to analyze the thermal reaction kinetics, activation energy (Ea), and the pre-exponential factor (A). The addition of HZSM-5 improved the reactivity and decreased the activation energy in the following order: xylan (30.54%) > biomass(15.41%) > lignin (14.75%) > cellulose (6.73%). The pyrolysis of cellulose gave the highest yield of bio-oil rich in levoglucosan and other anhydrosugars with minimal coke formation. Xylan gave a high gas yield and moderate yield of bio-oil rich in furfural, while lignin gave the highest solid residue and produced the lowest yield of bio-oil that was rich in phenolic compounds. After catalytic pyrolysis, xylan gave the highest yield of monocyclic aromatic hydrocarbons, 76.40%, and showed selectivity for benzene and toluene. Cellulose showed higher selectivity for xylene and naphthalene; however, lignin showed enhanced for selectivity of C10 + polycyclic aromatic hydrocarbons. Thus, catalytic pyrolysis method can effectively improve the properties of bio-oil and bio-char.  相似文献   

15.
Treatment of corn (Zea mays L.) cob under mild reaction conditions (60 °C and atmospheric pressure) in 88% formic acid was an effective method for separating cellulose from hemicellulose and lignin components in lignocellulose. Most of the hemicellulose degradation and lignin removal occurred within the first 90 min. After 6 h treatment, the decomposition of hemicellulose and the recovery of lignin were over 85% and 70%, respectively. Multi-level structures of lignin and solid residues were further characterized by FTIR, XRD, TG/DTG, SEM and SEC. Peaks attributable to lignin or hemicellulose disappeared in FTIR spectra, indicating complete removal of these two components. The remaining solid residues had a higher crystalline index. The major pyrolysis temperature of corncob was increased after formic acid treatment; the molecular weight (MW) of cellulose in solid residues was higher than that in intact cobs, whereas the hemicellulose remaining in the pulp had a lower MW than the original. Lignin was extracted in an esterified form designated as formic acid lignin (FAL). FAL had two thermal decomposition temperatures (Td) at 277 °C and 385 °C. The MW of lignin increased following formic acid treatment, which may make it a better starting material for chemical syntheses.  相似文献   

16.
木质纤维素生物质生产乙醇的预处理技术   总被引:11,自引:0,他引:11  
木质纤维素生物质经过预处理后,原料的内孔面积增大,纤维素的结晶性降低,并且半纤维素和木质素被去除.预处理后的生物质容易进行酶水解生产燃料乙醇。总结了近些年来的预处理技术,如物理法、化学法和生物法。  相似文献   

17.
To evaluate the potential of pulverized coals partially replaced by rice husks used in blast furnaces, thermal behavior of blends of rice husks and an anthracite coal before and after passing through a drop tube furnace (DTF) was investigated by using a thermogravimetry (TG). For the blends of the raw materials in the TG, fuel reaction with increasing temperature could be partitioned into three stages. When the rice husks were contained in the fuel, a double-peak distribution in the first stage was observed, as a consequence of thermal decompositions of hemicellulose, cellulose and lignin. A linear relationship between the char yield and the biomass blending ratio (BBR) developed, reflecting that synergistic effects in the pyrolytic processes were absent. This further reveals that the coal and the rice husks can be blended and consumed in blast furnaces in accordance with the requirement of volatile matter contained in the fuel. After the fuels underwent rapid heating (i.e. the DTF), a linear relationship from the thermogravimetric analyses of the unburned chars was not found. Therefore, the synergistic effects were observed and they could be described by second order polynomials. When the BBR was less than 50%, varying the ratio had a slight effect on the thermal behavior of the unburned chars. In addition, the thermal reactions of the feeding fuels and of the formed unburned chars behaved like a fingerprint.  相似文献   

18.
The thermal degradation behavior and pyrolytic mechanism of cellulose, hemicellulose, and lignin are investigated at different heating rates from 10 Kmin?1 to 100 Kmin?1 with a step-size of 10 Kmin?1 using thermogravimetric analysis (TGA) equipment. It is observed that there are one, two, and three stages of pyrolytic reactions takes place in cellulose, hemicellulose, and lignin respectively. Isoconversional method is not suitable to analyse pyrolysis of hemicellulose and lignin as it involves multi-step reactions. The activation energies of the main decomposition stage for cellulose, hemicellulose, and lignin are 199.66, 95.39, and 174.40 kJ mol?1 respectively. It is deduced that the pyrolysis reaction of cellulose corresponds to random scission mechanism while the pyrolysis reaction of hemicellulose and lignin follows the order based reaction mechanisms.  相似文献   

19.
This study analyzes the energy balance of a bioethanol production system from high-yield rice plant in Japan. Two systems are considered in which rice is converted to ethanol: one in which cellulose feedstocks, straw and husk, are used for cogeneration (scenario 1), and the other in which they are converted to ethanol, and byproducts such as lignin and unreacted holocellulose are used for cogeneration (scenario 2). Energy input in the agricultural process including transportation is estimated to be 52.3 GJ/ha from an Input Output Table. The heating values of produced rice and cellulose feedstocks are 120.7 GJ/ha and 162.3 GJ/ha, respectively. The net energy balance (NEB) of scenario 1 is 129.2 GJ/ha, which produces 3.6 kL/ha of ethanol and 9420 kWh/ha of external electricity. On the other hand, NEB of scenario 1 is 11.7 GJ/ha, which produces 7.1 kL/ha of ethanol. Both NEBs are positive, but NEB of scenario 2 is much higher than that of scenario 1. An acid hydrolysis technology of cellulosic biomass applied to scenario 2 needs a large amount of heat energy for sulfuric acid recovery. If an enzyme hydrolysis of cellulosic biomass is developed, there is a possibility of improving NEB of scenario 2.  相似文献   

20.
The utilization of different chemical constituents of corn silage during industrial-scale anaerobic digestion was determined. Corn silage together with the resulting solid digestate generated during biogas production were collected from an industrial plant during a regular operating period. Moisture, water and ethanol extractives, ash, total nitrogen, starch, cellulose, the monomeric composition of hemicellulose, acid soluble and acid insoluble lignin were measured in both corn silage and corn silage solid digestate. The relative consumption of each component of corn silage during its anaerobic digestion was estimated with reference to acid insoluble lignin. It was assumed that lignin was not digested throughout the process. Starch and large fractions of extractives and acid soluble lignin were digested. In contrast, the digestion of cellulose and particularly hemicellulose were limited (40% and 29% respectively). Of the hemicellulose monomers, xylose was the least digested (20%). The present work shows that the digestate produced by commercial corn-silage anaerobic digestion contains a notable quantity of cell wall polymers. These could potentially be used in biorefinery processes, e.g. ethanol and xylo-oligosaccharide production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号