首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One way to reduce greenhouse gas emissions from the transportation sector is to replace fossil fuels by biofuels. However, production of biofuels also generates greenhouse gas emissions. Energy and greenhouse gas balances of transportation biofuels suitable for large-scale production in Finland have been assessed in this paper. In addition, the use of raw materials in electricity and/or heat production has been considered. The overall auxiliary energy input per energy content of fuel in biofuel production was 3–5-fold compared to that of fossil fuels. The results indicated that greenhouse gas emissions from the production and use of barley-based ethanol or biodiesel from turnip rape are very probably higher compared to fossil fuels. Second generation biofuels produced using forestry residues or reed canary grass as raw materials seem to be more favourable in reducing greenhouse gas emissions. However, the use of raw materials in electricity and/or heat production is even more favourable. Significant uncertainties are involved in the results mainly due to the uncertainty of N2O emissions from fertilisation and emissions from the production of the electricity consumed or replaced.  相似文献   

2.
Residential Fuel Cell micro combined heat and power (FC-μCHP) systems can help decarburizing the energy system. In the European ene.field project, the environmental performance of FC-μCHP under different conditions was therefore evaluated by means of a comprehensive Life Cycle Assessment (LCA). Important influential factors were explored, i.e. heating demands, full load hours (FLHs) and electricity replacement mixes (ERMs). The systems were compared with a stand-alone Gas Condensing Boiler (GCB) and a heat pump (HP, only in single family homes, SFHs). For the initially assumed FLHs and the current ENTSO-E ERM, relevant environmental impacts including climate change are generally smaller for the FC-μCHPs than for the HP and the stand-alone GCB. In the setting “existing SFHs in central climate” with the highest deployment potential, GHG emission savings are higher the more carbon-intensive the ERM is and/or higher the net electricity export into the grid is. The results are discussed and put into perspective. Further research demands as well as product development opportunities are outlined. The importance of a green hydrogen economy is emphasized.  相似文献   

3.
4.
A double-chamber self pH-buffer microbial fuel cell (MFC) was used to investigate the effect of dissolved oxygen (DO) concentration on cathodic nitrification coupled with anodic denitrification MFC. It was found that nitrogen and COD removal, electricity generation were positively correlated with DO concentration in the cathode chamber. When total inorganic nitrogen of influent was 202.51 ± 7.82 mg/L at DO 6.8 mg/L, the maximum voltage output was 282 mV and the maximum power density was 149.76 mW/m2. After 82 h operation, the highest removal rate of total inorganic nitrogen was 91.71 ± 0.38%. Electrochemical impedance spectroscopy (EIS) test showed that the internal resistance of the reactor with different DO concentration was related to the diffusion internal resistance. The data of bacterial analysis in the cathode chamber revealed that there were not only ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), but also a large number of exoelectrogens. Compared with the traditional biological denitrification and related MFC denitrification research, this method does not need pH-buffer solution and external circulation device through the anion exchange membrane (AEM). It can generate electricity and remove nitrogen simultaneously, and the oxygen utilization rate in the cathode can also be enhanced.  相似文献   

5.
A single chamber microbial fuel cell (MFC) with an air-cathode is successfully demonstrated using glucose-ceftriaxone sodium mixtures or ceftriaxone sodium as fuel. Results show that the ceftriaxone sodium can be biodegraded and produce electricity simultaneously. Interestingly, these ceftriaxone sodium-glucose mixtures play an active role in production of electricity. The maximum power density is increased in comparison to 1000 mg L−1 glucose (19 W m−3) by 495% for 50 mg L−1 ceftriaxone sodium + 1000 mg L−1 glucose (113 W m−3), while the maximum power density is 11 W m−3 using 50 mg L−1 ceftriaxone sodium as the sole fuel. Moreover, ceftriaxone sodium biodegradation rate reaches 91% within 24 h using the MFC in comparison with 51% using the traditional anaerobic reactor. These results indicate that some toxic and bio-refractory organics such as antibiotic wastewater might be suitable resources for electricity generation using the MFC technology.  相似文献   

6.
The effects of Pseudomonas aeruginosa, pyocyanin, and influent dissolved oxygen (DO) on the electricity generation in a baffled stacking microbial fuel cell (MFC) treating high strength molasses wastewater were investigated. The result shows that the influent chemical oxygen demand (COD) of 500–1000 mg l−1 had the optimal substrate-energy conversion rate. The addition of a low density of P. aeruginosa (8.2 mg l−1) or P. aeruginosa with pyocyanin improved the COD removal and power generation. This improvement could be attributed to the enhancement of electron transfer with the help of redox mediators. Influent DO at a concentration of up to 1.22 mg l−1 did not inhibit the electricity generation. Large proportions of COD, organic-N and total-N were removed by the MFC. The MFC effluent was highly biodegradable. Denaturing gradient gel electrophoresis analysis shows that the added pyocyanin resided in the MFC for up to 14 days. An analysis of anode voltage reveals that microbial proton transport to the cathode was importantly responsible for the internal resistance.  相似文献   

7.
The effect of water generation on the performance of proton exchange membrane fuel cell (PEMFC) was investigated by using a periodical linear sweep method. Three different kinds of IV curves were obtained, which reflected different amount of water uptake in the fuel cell. The maximum water uptake that could avoid flooding in the fuel cell and the hysteresis of water diffusion were also discussed. Quantitative analysis of water uptake and water transport phenomena in this study were conducted both experimentally and theoretically. Results showed that the water uptake capacity for the fuel cell under no severe flooding was 27.837 mg cm−2. The transient response of the internal resistance indicated that the high frequency resistance (HFR) lagged the current with a value of about 20 s. The effect of purging operation on the internal resistance of the fuel cell was also explored. Experimental data showed that the cell experienced a continuous 8-min purging process can maintain at a relatively steady and dry state.  相似文献   

8.
Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.  相似文献   

9.
With the advantages of clean, efficient and energy-saving, microbial fuel cells (MFCs) were characterized with perfect significance in the field of degrading environmental pollutants and generating electricity meanwhile. The cathode materials affected the activity of oxygen reduction reaction (ORR), and affected the power generation performance for MFCs. There were many kinds of nano materials played an important role in the field of cathode catalysis. The advantages of metal and non-metal composites were easy to obtain and low cost; layered double hydroxide (LDH) was easy to control and compound, and could be fully realized functionalization; metal organic frameworks (MOFs) were widely used since their porosity, high specific surface area and high activity; covalent organic frameworks (COFs) were low density and easy to be modified, so as to modify and realize functionalization; MXene was an excellent two-dimensional material, which could provide more channels for the movement of ions. The nano materials formed by the composite of various materials combined the advantages of various materials and played key role in improving ORR performance of MFCs.  相似文献   

10.
A multi-dimensional two-phase PEM fuel cell model, which is capable of handling the liquid water transport across different porous materials, including the catalyst layer (CL), the micro-porous layer (MPL), and the macro-porous gas diffusion medium (GDM), has been developed and applied in this paper for studying the liquid water transport phenomena with consideration of the MPL. Numerical simulations show that the liquid water saturation would maintain the highest value inside the catalyst layer while it possesses the lowest value inside the MPL, a trend consistent qualitatively with the high-resolution neutron imaging data. The present multi-dimensional model can clearly distinguish the different effects of the current-collecting land and the gas channel on the liquid water transport and distribution inside a PEM fuel cell, a feature lacking in the existing one-dimensional models. Numerical results indicate that the MPL would serve as a barrier for the liquid water transport on the cathode side of a PEM fuel cell.  相似文献   

11.
We have reviewed more than 100 references that are related to water management in proton exchange membrane (PEM) fuel cells, with a particular focus on the issue of water flooding, its diagnosis and mitigation. It was found that extensive work has been carried out on the issues of flooding during the last two decades, including prediction through numerical modeling, detection by experimental measurements, and mitigation through the design of cell components and manipulating the operating conditions. Two classes of strategies to mitigate flooding have been developed. The first is based on system design and engineering, which is often accompanied by significant parasitic power loss. The second class is based on membrane electrode assembly (MEA) design and engineering, and involves modifying the material and structural properties of the gas diffusion layer (GDL), cathode catalyst layer (CCL) and membrane to function in the presence of liquid water. In this review, several insightful directions are also suggested for future investigation.  相似文献   

12.
In the present study, the dispersion process of hydrogen leaking from an FCV (Fuel Cell Vehicle) in an underground parking garage is analyzed with numerical simulations in order to assess hazards and associated risks of a leakage accident. The temporal and spatial evolution of the hydrogen concentration as well as the flammable region in the parking garage was predicted numerically. The volume of the flammable region shows a non-linear growth in time with a latency period. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance to relieve accumulation of the hydrogen gas. It is found that expansion of the flammable region is delayed by the fan via enhanced mixing near the boundary of the flammable region. The present numerical results can be useful to analyze safety issues in automotive applications of hydrogen.  相似文献   

13.
The effects of compositional and environmental parameters on the kinetics of microstructural degradation are investigated for porous Ni/CGO anodes in solid oxide fuel cells (SOFC). Improved methodologies of SEM-imaging, segmentation and object recognition are described which enable a precise quantification of nickel grain growth over time. Due to these methodological improvements the grain growth can be described precisely with a standard deviation of only 5-15 nm for each time step.In humid atmosphere (60 vol.% H2O, 40% N2/H2) the growth rates of nickel are very high (up to 140%/100 h) during the initial period (<200 h). At longer exposure time (>1000 h) the growth rates decrease significantly to nearly 0%/100 h. In contrast, under dry conditions (97 vol.% N2, 3 vol.% H2) the growth rates during the initial period are much lower (ca. 1%/100 h) but they do not decrease over a period of 2000 h.In addition to the humidity factor there are other environmental and compositional parameters which have a strong influence on the kinetics of the microstructural degradation. The nickel coarsening is strongly depending on the gas flow rate. Also the initial microstructures and the anode compositions have a big effect on the degradation kinetics. Thereby small average grain sizes, wide distribution of particle size and high contents of nickel lead to higher coarsening and degradation rates.Whereas the nickel coarsening appears to be the dominant degradation mechanism during the initial period (<200 h) other degradation phenomena become more important during long exposure time (>1000 h) in humidified gas. Thereby the evaporation of volatile nickel species may lead to a local increase of the Ni/CGO ratio. Due to the surface wetting of CGO a continuous layer tends to form on the surface of the nickel grains which prevents further grain growth and evaporation of nickel. These phenomena lead to a microstructural reorganization between 1000 and 2300 h of exposure. This complex pattern of degradation phenomena also leads to a change of the amount of active microstructural sites that are important for catalytic reactions at the pore-nickel interfaces and for electrochemical reactions at the triple phase boundaries (TPB).  相似文献   

14.
The Chinese government has enacted various incentives to promote the use of new energy vehicles (NEVs), mainly battery-electric vehicles, plug-in hybrid electric vehicles, and fuel cell vehicles. In this study, we analyze whether consumer preferences for NEVs changed between 2012 and 2017 and explored explanatory factors through questionnaire surveys conducted in the two years. The comparative results revealed four main findings. First, consumer acceptance of NEVs increased substantially between 2012 and 2017. Second, factors such as economic benefits, performance attributes, environmental awareness, and government policies were important in determining consumer acceptance of NEVs in both 2017 and 2012. New factors, including infrastructure construction and social influence, were shown to have had significant impacts on NEV acceptance by potential purchasers in 2017. Third, government policies had the most significant direct impact on NEV acceptance in 2017. Fourth, the indirect effects of government policies on consumer acceptance of NEVs are not strong but statistically significant, via government-promoted environmental awareness functioning as a mediating mechanism.  相似文献   

15.
The use of fossil fuel is expected to increase significantly by midcentury because of the large rise in the world energy demand despite the effective integration of renewable energies in the energy production sector. This increase, alongside with the development of stricter emission regulations, forced the manufacturers of combustion systems, especially gas turbines, to develop novel combustion techniques for the control of NOx and CO2 emissions, the latter being a greenhouse gas responsible for more than 60% to the global warming problem. The present review addresses different burner designs and combustion techniques for clean power production in gas turbines. Combustion and emission characteristics, flame instabilities, and solution techniques are presented, such as lean premixed air‐fuel (LPM) and premixed oxy‐fuel combustion techniques, and the combustor performance is compared for both cases. The fuel flexibility approach is also reviewed, as one of the combustion techniques for controlling emissions and reducing flame instabilities, focusing on the hydrogen‐enrichment and the integrated fuel‐flexible premixed oxy‐combustion approaches. State‐of‐the‐art burner designs for gas turbine combustion applications are reviewed in this study, including stagnation point reverse flow (SPRF) burner, dry low NOx (DLN) and dry low‐emission (DLE) burners, EnVironmental burners (including EV, AEV, and SEV burners), perforated plate (PP) burner, and micromixer (MM) burner. Special emphasis is made on the MM combustor technology, as one of the most recent advances in gas turbines for stable premixed flame operation with wide turndown and effective control of NOx emissions. Since the generation of pure oxygen is prerequisite to oxy‐combustion, oxygen‐separation membranes became of immense importance either for air separation for clean oxy‐combustion applications or for conversion/splitting of the effluent CO2 into useful chemical and energy products. The different carbon‐capture technologies, along with the most recent carbon‐utilization approaches towards CO2 emissions control, are also reviewed.  相似文献   

16.
This paper outlines the past analysis and projected planning of the Irish electricity generation sector using an extension of a novel methodology based on a graphical optimisation concept. The main two adaptations/extensions to the current form of the methodology are proposed as both the forecasting adaptation and the extension that accounts for the dynamic nature of electricity supply–demand. The determination of an optimal energy resource (OER) mix (or optimal fuel mix) for the sector will look to give guidelines towards fulfilling the sector's Kyoto targets, as well as yielding a possible approach for other sectors to follow in the future. Data pertaining to the sector for the year 2005 was taken in order to illustrate the analysis and forecasting procedures.  相似文献   

17.
Ni-Al2O3 catalysts for use in internal reforming in a molten carbonate fuel cell (MCFC) were prepared by homogeneous precipitation method at various synthesis temperatures. The effects of synthesis temperature on physicochemical properties and catalytic activities of the Ni-Al2O3 catalysts were investigated. XRD measurements exhibited that the peak intensity of NiAl2O4 in the calcined catalysts increased with higher synthesis temperatures. TPR measurements demonstrated that reduction peaks appeared around 670–680 °C for every synthesis temperature, indicating that the Ni particles interacted strongly with the support. Hydrogen chemisorption results showed that nickel dispersion and nickel surface area decreased in the order: K52_80C > K52_85C > K52_90C > K52_95C > K52_100C. TEM images of the reduced Ni-Al2O3 catalysts revealed that the average sizes of Ni particles were 13.1, 13.4 and 15.9 nm for K52_80C, K52_90C and K52_100C, respectively, which means that a higher synthesis temperature yielded a larger Ni particle. The performance of the catalysts in methane steam reforming showed that catalysts prepared at the lowest synthesis temperature (80 °C) exhibited the highest reaction rate. These results suggest that a lower synthesis temperature is favorable to prepare highly active Ni-Al2O3 catalysts by the homogeneous precipitation method.  相似文献   

18.
The Global MARKAL-Model (GMM), a multi-regional “bottom-up” partial equilibrium model of the global energy system with endogenous technological learning, is used to address impacts of internalisation of external costs from power production. This modelling approach imposes additional charges on electricity generation, which reflect the costs of environmental and health damages from local pollutants (SO2, NOx) and climate change, wastes, occupational health, risk of accidents, noise and other burdens. Technologies allowing abatement of pollutants emitted from power plants are rapidly introduced into the energy system, for example, desulphurisation, NOx removal, and CO2 scrubbers. The modelling results indicate substantial changes in the electricity production system in favour of natural gas combined cycle, nuclear power and renewables induced by internalisation of external costs and also efficiency loss due to the use of scrubbers. Structural changes and fuel switching in the electricity sector result in significant reduction of emissions of both local pollution and CO2 over the modelled time period. Strong decarbonisation impact of internalising local externalities suggests that ancillary benefits can be expected from policies directly addressing other issues then CO2 mitigation. Finally, the detailed analysis of the total generation cost of different technologies points out that inclusion of external cost in the price of electricity increases competitiveness of non-fossil generation sources and fossil power plants with emission control.  相似文献   

19.
Phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes used in high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have high proton conductivity, and excellent mechanical and thermal stability. However, the deliquescence of PA leads to performance deterioration in humid atmosphere. The performance degradation upon exposure of the PA-doped membrane to humidity and the changes in the performance as a function of the PA loading in the electrodes are investigated. The performance of the HT-PEMFC employing the humidity-exposed membrane declines by 74.1% compared to that of the pristine membrane due to ineffective formation of the three-phase boundary. Loading a small amount of PA into the electrode induces drastic performance recovery with a decrease in the charge transfer resistance, especially at the anode. PA-dosing of both electrodes produces the best performance recovery, exceeding that of the pristine counterparts. This is a simple and effective method of recovering the performance of HT-PEMFCs after humidity-related deterioration.  相似文献   

20.
This paper reviews developments in the direct-fired biomass power sector and provides an up to date investment outlook by calculating the Net Present Value of new investments, and the appropriate level of Feed-in-Tariff needed to stimulate future investment. An overview is provided of support policies, historical growth in installations, and main market players. A number of data sources is combined to build a database with detailed information of individual biopower projects. This data is used to describe technological and market trends, which are used in a cash flow model to calculate the NPV of a typical project. The NPV for new projects is estimated to be negative, and investment should be expected to stall without proper policy intervention. Increasing fuel prices, local competition over biomass fuel resources, lower than expected operational performance and a downturn in carbon markets have deteriorated the investment outlook. In order to ensure reasonable profitability, the Feed-In-Tariff should be increased, from the current level of 90.9 € MWh−1, to between 97 and 105 € MWh−1. Where possible, government organizations should help organize demand for the supply of heat. Local rural energy bureaus may help organize supply networks for biomass fuels throughout the country, in order to reduce seasonal and local fuel scarcity and price fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号