首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J.G. Rogers  J.G. Brammer   《Biomass & bioenergy》2009,33(10):1367-1375
Fast pyrolysis of biomass produces a liquid bio-oil that can be used for electricity generation. Bio-oil can be stored and transported so it is possible to decouple the pyrolysis process from the generation process. This allows each process to be separately optimised. It is necessary to have an understanding of the transport costs involved in order to carry out techno-economic assessments of combinations of remote pyrolysis plants and generation plants. Published fixed and variable costs for freight haulage have been used to calculate the transport cost for trucks running between field stores and a pyrolysis plant. It was found that the key parameter for estimating these costs was the number of round trips a day a truck could make rather than the distance covered. This zone costing approach was used to estimate the transport costs for a range of pyrolysis plants size for willow woodchips and baled miscanthus. The possibility of saving transport costs by producing bio-oil near to the field stores and transporting the bio-oil to a central plant was investigated and it was found that this would only be cost effective for large generation plants.  相似文献   

2.
生物质热解液化技术经济分析   总被引:8,自引:0,他引:8  
我国生物质资源十分丰富,但主要以各类农业残余废弃物为主,其特点是能量密度低、分布不集中,如果采用热解液化技术在产地将其先分散转化成生物油,然后再对生物油进行应用或再加工,则就避免了大规模收集和长距离运输生物质所带来的巨大困难。研究分析表明:热解液化设备的规模以每小时可处理2t农业残余废弃物较为适宜,且这种技术在我国具有良好的市场应用前景。  相似文献   

3.
The correlation proposed in this work has been compared statistically with a larger database of bio-oils taken from values in the literature. The correlation developed here uses only one formula used in the major constituents of elementary analyses. Seventy-nine data points have been used to derive this correlation. This correlation is valid for bio-oils having a broad range of elemental composition, that is C: 8.2–89.3%; H: 4.6–14.4%; O: 1.4–76.9%; N: 0.0–10.8%; and S: 0.0–1.8%. It presents an average absolute error of 1.21% and bias error of 0.59%, and thereby establishes its versatility.  相似文献   

4.
Thermo-kinetic models for biomass pyrolysis were simulated under both isothermal and non-isothermal conditions to predict the optimum parameters for bio-oil production. A comparative study for wood, sewage sludge, and newspaper print pyrolysis was conducted. The models were numerically solved by using the fourth order Runge–Kutta method in Matlab-7. It was also observed that newspaper print acquired least pyrolysis time to attain optimum bio-oil yield followed by wood and sewage sludge under the identical conditions of temperature and heating rate. Thus, at 10 K/min, the optimum pyrolysis time was 21.0, 23.8, and 42.6 min for newspaper print, wood, and sewage sludge, respectively, whereas the maximum bio-oil yield predicted was 68, 52, and 36%, respectively.  相似文献   

5.
Pyrolysis is one of the potential routes to harmless energy and useful chemicals from biomass. The pyrolysis of Albizia amara was studied for determining the main characteristics and quantities of liquid products. Particular investigated process variables were temperature from 350 to 550°C, particle size from 0.6 to 1.25 mm, and heating rate from 10 to 30 °C/min. The maximum bio-oil yield of 48.5 wt% at the pyrolysis temperature of 450°C was obtained at the particle size of 1.0 mm and at the heating rate of 30 °C/min. The bio-oil product was analyzed for physical, elemental, and chemical composition using Fourier transform infrared spectroscopy and gas chromatography spectroscopy. The bio-oil contains mostly phenols, alkanes, alkenes, saturated fatty acids and their derivatives. According to the experimental results, the pyrolysis bio-oil can be used as low-grade fuel having heating value of 18.63 MJ/kg and feedstock for chemical industries.  相似文献   

6.
The present study is aimed to investigate the upgrading of beech sawdust pyrolysis bio-oil through catalytic cracking of its vapors over Fe-modified ZSM-5 zeolite in a fixed bed tubular reactor. The zeolite supported iron catalyst was successfully prepared with varying metal loading ratios (1, 5, 10 wt%) via dry impregnation method and further characterized by BET, XRD, and SEM-EDX techniques. TG/FT-IR/MS analysis was used for the detection of biomass thermal degradation. Product yields of non-catalytic and catalytic pyrolysis experiments were determined and the obtained results show that bio-oil yields decreased in the presence of catalysts. Besides, the bio-oil composition is characterized by GC/MS. It was indicated that the entity of the ZSM-5 and Fe/ZSM-5 catalyst reveal a significant enhancement quality of the pyrolysis products in comparison with non-catalytic experiment. The catalyst increased oxygen removal from the organic phase of bio-oil and further developed the production of desirable products such as phenolics and aromatic compounds.  相似文献   

7.
In this study, catalytic pyrolysis of pulper rejects was performed with catalysts obtained from activated clinoptilolite and meerschaum for the production of pyrolytic fuel oils. The increasing proportion of polymers in rejects led to an increase in oil yield in non-catalytic process. The highest liquid (61.4%) and char (32.19%) yields were obtained using 15% clinoptilolite and 5% meerschaum, while the highest gas yield (21.44%) was obtained via the non-catalytic process. The fuel properties of the oils were significantly enhanced with the catalytic process. The clinoptilolite catalyst showed better performance compared to the meerschaum in terms of oil yield and fuel properties.  相似文献   

8.
This work presents a study of the performance of the modified plate reactor by rapid pyrolysis experiments with different biomass samples (MDF, bark pine and Avicel cellulose). The use of the plate instead of a grid allowed us to achieve a more homogeneous temperature distribution across the plate and, therefore, biomass sample. The mass yields of the major pyrolysis products CO, CO2, C2H2, CH4, C2H4 and C2H6 are measured as a function of the holding time (from 0 to 50 s) for a number of the final temperatures (from 435 to 1100 C) using the novel approach to quantitative FTIR analysis of biomass pyrolysis spectra. Special care was taken to demonstrate the influence of the secondary tar cracking on the yields of the permanent gases. Yields of major permanent gases plotted versus each other on a logarithmic scale show two distinctive regions reflecting primary and secondary kinetic processes. The experiments show that the modified plate reactor can be used for studying the kinetics of the primary decomposition of the biomass at temperatures ≤600 C.  相似文献   

9.
《能源学会志》2020,93(1):15-24
Catalytic fast pyrolysis of sawdust was investigated over HZSM-5 zeolites (SiO2/Al2O3 = 25, 50 and 80) in a drop tube quartz reactor for production of green aromatics and olefins. The effects of temperature, weight hourly space velocity (WHSV), SiO2/Al2O3 ratio and atmosphere on yield and selectivity of aromatics were investigated. The results show that almost all small organic oxygen species in initial volatiles were converted into gaseous hydrocarbons and aromatics after in situ catalysis of HZSM-5. HZSM-5 whose SiO2/Al2O3 is 25 exhibited the best performance with the aromatics yield of 21.8% on carbon basis at 500 °C. However, HZSM-5 can act as cracking and aromatization catalyst, but not as an agent to promote hydrogenation. The ESI-MS revealed the most abundant macromolecular compounds in initial volatiles were O1O27 species with 0–20 double bond equivalent (DBE) values and 5–40 carbon numbers, while the macromolecules were O1O9 species with 2–12 DBE and 10–25 carbon numbers after upgrading. Furthermore, the formation of coke on catalysts was influenced by the properties of HZSM-5 and experimental conditions.  相似文献   

10.
生物质能的应用前景分析   总被引:11,自引:0,他引:11  
生物质能是可再生能源的重要组成部分,生物质能的高效利用,对解决能源和生态环境问题将起到十分积极的作用。概述了目前生物质能的主要转换方式。化学转变中的液化、气化和热解技术是目前主要研究方向。通过液化、热解可以直接得到一些化工产品;通过气化可以得到合成气,可以用来合成氨或者甲醇。总之,通过这些转变不但可以得到一些化工产品,而且可以缓解化石能源桔竭带来的能源危机。  相似文献   

11.
Conversion of lignocellulosic biomass into bio-oil through fast pyrolysis process is considered one of the promising routes to supplement conventional fossil oil. Future bio-refineries require production large amounts of bio-oil from several biomass types. Characterization of the produced bio-oils is important to determine their suitability as bio-refinery feedstock. In this study, bio-oils were produced from white oak and sweetgum woods in an auger reactor at 450°C. The yields of char, liquid, and gas were calculated. The physical characterization of bio-oils was performed based on the investigation of different properties, such as pH, density, viscosity, water content, acid value, and molecular weight distribution of bio-oil components. The chemical compositions of the bio-oils were also investigated by gas chromatography/mass spectrometry and Fourier transform infra-red analyses. The physicochemical properties of the produced bio-oils were comparable to those obtained from similar woody biomass and the oils were suitable for fuel production.  相似文献   

12.
The present paper describes the thermal conditions under which a solid particle (biomass) undergoes an endothermic decomposition caused by an external heat flux. The results derived from a mathematical model concern two extreme cases of conditions following the size of the particle (chemical and ablation regimes). The sensitivity of the results is studied as a function of several experimental parameters (particle size; heat transfer coefficient; heat source temperature) and chemical characteristics (kinetics and enthalpy). The sensible parameter governing the reaction temperature is the activation energy. The enthalpy has a minor effect except on heating rates. The reaction temperature is always much lower than the heat source temperature. In the chemical regime it is shown that after a simple heating phase, the temperature at which the reaction starts, varies between relatively close limits (less than 80 K). A temperature stabilization is then observed as the decomposition proceeds in such a way that the reaction may be considered as quasi-isothermal mainly for high enthalpies. In the ablation regime, the particle shrinks rapidly at a constant velocity, the reaction occurring inside an external thin layer. The reaction temperatures and heating rates are always lower than in the chemical regime.

Data derived from previous experiments on fast pyrolysis of wood (ablation conditions) are in good agreement with the predictions of the model (reaction temperature, ablation rate and ablation layer thickness). The results bring confirmation of the effect of fusion observed during the thermal decomposition of biomass.  相似文献   


13.
The research investigates the fuel property variations associated with the time of harvest and the duration of storage of Miscanthus x giganteus over a one year period. The crop has been harvested at three different times: early (September 2009), conventional (April 2010) and late (June 2010). Once harvested the crop was baled and stored. Biomass properties of samples taken from different storage zones were compared. The thermochemical properties have been investigated using a range of analytical equipment including thermogravimetric analysis (TGA) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). In addition, bio-oil has been produced from the early, conventional and late harvest using a laboratory scale (300 g h−1) fast pyrolysis unit. The potential organic liquid yield (on dry basis, also excluding the reaction water generated) based on the laboratory fast pyrolysis processing undertaken in this study, was found to vary between 2.82 and 3.18 dry t ha−1 for the early and the late harvest respectively. The bio-oil organic yield was reduced by approximately 11% (0.36 t ha−1) between the early and the late harvest. Char yield was also reduced by approximately 18% (0.61 t ha−1). The highest gas yield (18.03%-1.60 t ha−1) was observed for the conventional harvest. Gas chromatography-mass spectrometry (GC-MS) analysis of the bio-oil shows that levoglucosan, methylbenzaldehyde and 1,2-benzenediol all increase as a consequence of delayed harvest. It was also observed that by delaying the harvest time the O:C atomic ratio is reduced and a more carbonaceous feedstock is produced.  相似文献   

14.
Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of xylan and on-line analysis of pyrolysis vapors. Tests were conducted to investigate the effects of temperature on pyrolytic products, and to reveal the effect of HZSM-5 and M/HZSM-5 (M= Fe, Zn) zeolites on pyrolysis vapors. The results showed that the total yield of pyrolytic products first increased and then decreased with the increase of temperature from 350°C to 900°C. The pyrolytic products were complex, and the most abundant products included hydroxyacetaldehyde, acetic acid, 1-hydroxy-2-propanone, 1-hydroxy-2-butanone and furfural. Catalytic cracking of pyrolysis vapors with HZSM-5 and M/HZSM-5 (M= Fe, Zn) catalysts significantly altered the product distribution. Oxygen-containing compounds were reduced considerably, and meanwhile, a lot of hydrocarbons, mainly toluene and xylenes, were formed. M/HZSM-5 catalysts were more effective than HZSM-5 in reducing the oxygen-containing compounds, and therefore, they helped to produce higher contents of hydrocarbons than HZSM-5.  相似文献   

15.
Biomass in the form of pine wood was pyrolysed in an externally heated fluidised bed pyrolysis reactor with nitrogen as the fluidising gas. A section of the freeboard of the reactor was packed with zeolite ZSM-5 catalyst. The pyrolysis oils before and after catalysis were collected in a series of condensers and cold traps. In addition, gases were analysed off-line by packed column gas chromatography. The composition of the oils and gases were determined before and after catalysis in relation to process conditions. The oils were analysed by liquid chromatography followed by gas chromatography/mass spectrometry. The results showed that the oils before catalysis were highly oxygenated, after catalysis the oils were markedly reduced in oxygenated species with an increase in aromatic species, producing a premium grade gasoline type fuel. The gases were CO2, CO, H2, CH4, C2H4 and C3H6 and minor concentrations of other hydrocarbon gases. After catalysis the concentration of CO2 and CO were increased. Detailed analysis of the upgraded oils showed that there were high concentrations of economically valuable chemicals. However, biologically active polycyclic aromatic species were also present in the catalysed oil, which increased with increasing catalyst temperature.  相似文献   

16.
In this study, innovative Ni-based catalysts supported by five typical slag carriers (magnesium slag (MS), steel slag (SS), blast furnace slag (BFS), pyrite cinder (PyC) and calcium silicate slag (CSS)) were prepared by wet impregnation. With the prepared catalysts and Ni/γ-Al2O3 catalyst, catalytic reforming of pyrolysis volatiles from pine sawdust for syngas production and tar removal was investigated. The catalysts were characterized by BET, XRD, SEM, TEM and Raman. The catalytic performances of the six catalysts were decreasing in the following order: Ni/MS > Ni/γ-Al2O3 > Ni/SS > Ni/BFS > Ni/CSS > Ni/PyC. Ni/MS catalyst exhibited excellent catalytic reactivity as well as thermal stability in terms of tar conversion (95.19%), gas yield (1.46 Nm3/kg) and CO2 capture ability (CO2 yield of 0.5%). Both amorphous carbon and graphite-type carbon were formed on the catalysts after catalytic reforming and the D/G ratio (the relative intensity ratio of the D-band to the G-band) was positively correlated to the catalytic activity.  相似文献   

17.
Biomass chemical looping gasification (BCLG), which employs oxygen carriers (OCs) as the gasification agent, is drawing more attention for its low cost and environmental friendliness. However, the complex products of biomass pyrolysis and the reactions between OCs and the pyrolysis products constrain its development. In this study, MFe2O4 (M = Cu, Ba, Ni and Co) ferrites synthesized via the sol-gel method were investigated as OCs in BCLG for hydrogen-rich syngas production. The properties of the as-prepared and spent OCs were characterized by X-ray diffraction (XRD), H2-temperature programmed reduction (TPR), scanning electron microscopy (SEM), and automatic surface area porosimetry (BET). The three-phase products (char, pyrolysis gas and toluene) derived from biomass pyrolysis were employed as the reactants to investigate the reactivity of the ferrites. Then, BCLG experiments using biomass were conducted on the four ferrites to further determine their performance. The characterization results suggested that the four ferrites are all attractive for the chemical looping process, exhibiting good oxygen transferability and wide distributions of metal cations because of their metal synergistic effects in the spine structure. Reactions with pyrolysis gas and biomass char indicated that BaFe2O4 has a higher reactivity via a solid-solid reaction but a lower reactivity with pyrolysis gas, which make it very favorable for the production of hydrogen-rich syngas. Furthermore, BaFe2O4 showed excellent performance for toluene catalytic cracking with small amounts of carbon deposition. The synergetic effects between Ba and Fe metals considerably enhanced selective oxidation to produce 26.72% more H2 than CoFe2O4 and 13.79% more H2 than NiFe2O4 and CuFe2O4 for biomass gasification. The hydrogen yield produced by BaFe2O4 with the assistance of steam for biomass gasification can reach 41.8 mol/kg of biomass.  相似文献   

18.
Biomass based decentralized power generation using externally fired gas turbine (EFGT) can be a technically feasible option. In this work, thermal performance and sizing of such plants have been analyzed at different cycle pressure ratio (rp = 2−8), turbine inlet temperature (TIT = 1050–1350 K) and the heat exchanger cold end temperature difference (CETD = 200–300 K). It is found that the thermal efficiency of the EFGT plant reaches a maximum at an optimum pressure ratio depending upon the TIT and heat exchanger CETD. For a particular pressure ratio, thermal efficiency increases either with the increase in TIT or with the decrease in heat exchanger CETD. The specific air flow, associated with the size of the plant equipment, decreases with the increase in pressure ratio. This decrease is rapid at the lower end of the pressure ratio (rp < 4) but levels-off at higher rp values. An increase in the TIT reduces the specific air flow, while a change in the heat exchanger CETD has no influence on it. Based on this comparison, the performance of a 100 kW EFGT plant has been analyzed for three sets of operating parameters and a trade-off in the operating condition is reached.  相似文献   

19.
Liquid natural gas (LNG) delivered by means of sea-ships is compressed and then evaporated before its introduction to the system of pipelines. The possibilities of the utilization of cryogenic exergy of LNG for electricity production without any additional combustion of any its portion, have been analyzed. Three variants of the plant have been investigated. A cascade system with two working fluids has been analyzed in two first of them. The economic optimization proved that the optimum temperature difference in the LNG evaporation is higher than initially assumed. Therefore, a third variant of the plant has been analyzed, with ethane as a single working fluid. Only the third variant has been analyzed in detail.  相似文献   

20.
Growing the consumption of fossil fuels and emerging global warming issue have driven the research interests toward renewable and environmentally friendly energy sources. Biomass gasification is identified as an efficient technology to produce sustainable hydrogen. In this work, energy and exergy analysis coupled with thermodynamic equilibrium model were implemented in biomass gasification process for production of hydrogen. In this regard, a detailed comparison of the performance of a downdraft gasifier was implemented using air, steam, and air/steam as the gasifying agents for horse manure, pinewood and sawdust as the biomass materials. The comparison results indicate that the steam gasification of pinewood generates a more desired product gas compositions with a much higher hydrogen exergy efficiency and low exergy values of unreacted carbon and irreversibility. Then the effects of the inherent operating factors were investigated and optimized applying a response surface methodology to maximize hydrogen exergy efficiency of the process. A hydrogen exergy efficiency of 44% was obtained when the product gas exergy efficiency reaches to the highest value (88.26%) and destruction and unreacted carbon efficiencies exhibit minimum values of 7.96% and 1.9%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号