首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
《能源学会志》2014,87(4):306-313
Sequestrating CO2 in reservoirs can substantially enhance oil recovery and effectively reduce greenhouse gas emission. To evaluate the potential of CO2 enhanced oil recovery (EOR) and sequestration for Yanchang Oilfield in China, a screening standard which was suitable for CO2-EOR and sequestration in Yanchang Oilfield was proposed based on its characteristics of strong heterogeneity, high water content and severe fluid channeling after water flooding. In addition, an efficient calculation method – stream tube simulation method was presented to figure out CO2 sequestration coefficient and oil recovery factor. After screening and evaluating, it turned out that 148 out of 176 blocks in 22 oilfields were suitable for CO2-EOR and sequestration. CO2 flooding after water flooding can produce 180.21 × 106 t more crude oil and sequestrate 223.38 × 106 t CO2. The average incremental oil recovery rate of miscible reservoirs was 12.49% and the average CO2 sequestration coefficient was 0.27 t/t while the two values were 6.83% and 0.18 t/t for immiscible reservoirs. There are comparatively more reservoirs that are suitable for CO2-EOR and sequestration in Yanchang Oilfield than normal, which can obviously enhance oil recovery and means a great potential for CO2 sequestration. CO2-EOR and sequestration in Yanchang Oilfield has a bright application prospect.  相似文献   

2.
3.
Abstract

The CO2 immiscible process is a potentially viable method of enhanced oil recovery (EOR) for heavy oil reservoirs. In an immiscible CO2 process, part of the injected CO2 is absorbed into the reservoir fluids and part forms a free-gas phase in the reservoir. Three groups of well configurations were mainly used: (1) vertical injection and vertical production wells, (2) vertical injection and horizontal production wells, and (3) horizontal injection and horizontal production wells. In immiscible CO2 injection, highest recovery was obtained by vertical injection-horizontal production (VI-HP), followed by vertical injection-vertical production (VI-VP), and the least by horizontal injection-horizontal production (HI-HP). In VI-HP well configuration, the best recovery was obtained as 15.1% OOIP. In continuous CO2 injection experiments, oil recovery for the VI-HP well configuration was higher than that of the other well configurations. The lowest ultimate recovery was obtained from HI-HP well configuration. The distance between the horizontal injector and horizontal producer was another important factor for the displacement of oil. In all runs, CO2 breakthrough occurred very early, showing the dominance of viscous forces and relatively small effect of mass transfer between CO2 and oil. The total oil recovery varied considerably because of the differences in injection rates and because of the unstable displacement. As a whole, oil recovery increased with an increase in the injection rate of CO2. The cumulative gas-oil ratio (GOR) appeared to be sensitive to the gas injection rate for all well configurations. An increase in oil recovery with injection rate during initial stages of the runs was affected by the cumulative GOR.  相似文献   

4.
《Energy Conversion and Management》2005,46(11-12):1920-1940
Carbon dioxide (CO2) is already injected into a limited class of reservoirs for oil recovery purposes; however, the engineering design question for simultaneous oil recovery and storage of anthropogenic CO2 is significantly different from that of oil recovery alone. Currently, the volumes of CO2 injected solely for oil recovery are minimized due to the purchase cost of CO2. If and when CO2 emissions to the atmosphere are managed, it will be necessary to maximize simultaneously both economic oil recovery and the volumes of CO2 emplaced in oil reservoirs. This process is coined “cooptimization”.This paper proposes a work flow for cooptimization of oil recovery and geologic CO2 storage. An important component of the work flow is the assessment of uncertainty in predictions of performance. Typical methods for quantifying uncertainty employ exhaustive flow simulation of multiple stochastic realizations of the geologic architecture of a reservoir. Such approaches are computationally intensive and thereby time consuming. An analytic streamline based proxy for full reservoir simulation is proposed and tested. Streamline trajectories represent the three-dimensional velocity field during multiphase flow in porous media and so are useful for quantifying the similarity and differences among various reservoir models. The proxy allows rational selection of a representative subset of equi-probable reservoir models that encompass uncertainty with respect to true reservoir geology. The streamline approach is demonstrated to be thorough and rapid.  相似文献   

5.
6.
In this paper we investigate the mass transfer of CO2 injected into a homogenous (sub)-surface porous formation saturated with a liquid. In almost all cases of practical interest CO2 is present on top of the liquid. Therefore, we perform our analysis to a porous medium that is impermeable from sides and that is exposed to CO2 at the top. For this configuration density-driven natural convection enhances the mass transfer rate of CO2 into the initially stagnant liquid. The analysis is done numerically using mass and momentum conservation laws and diffusion of CO2 into the liquid. The effects of aspect ratio and the Rayleigh number, which is dependent on the characteristics of the porous medium and fluid properties, are studied. This configuration leads to an unstable flow process. Numerical computations do not show natural convection effects for homogeneous initial conditions. Therefore a sinusoidal perturbation is added for the initial top boundary condition. It is found that the mass transfer increases and concentration front moves faster with increasing Rayleigh number. The results of this paper have implications in enhanced oil recovery and CO2 sequestration in aquifers.  相似文献   

7.
《Energy》2005,30(10):1931-1952
A study has been performed to identify potential worldwide opportunities for early application of CO2 sequestration. An early opportunity is defined as a high-purity CO2 point source, which can provide CO2 at low costs to oil or coal fields, where the CO2 is sequestered, and simultaneously enhance oil production (CO2-EOR) or coal bed methane production (CO2-ECBM). A Geographical Information System (GIS) was used to combine worldwide CO2 point sources and oil and coal fields. This resulted in 429 potential source–oil field and 79 source–coal field combinations. A multi-criteria analysis (MCA), in which technical and socio-economic criteria are taken into account, was applied to rank the source–reservoir combinations generated by the GIS exercise. Some of the most promising cases were considered in more detail to select four illustrative cases for further study: two potential enhanced oil recovery (EOR) projects and two potential enhanced coal bed methane recovery (ECBM) projects. Case 1 consists of a hydrogen plant in Saudi Arabia, which could sequester 0.26 Mt/year CO2 in a depleted oil reservoir at a net saving of approximately 3 €/t CO2. EOR case 2 is a hydrogen plant in California, USA, which has to be retrofitted in order to generate a pure CO2 stream. Approximately 0.28 Mt CO2 could be stored annually. Mitigation costs have been estimated at 9–19 €/t CO2, depending on the availability of steam for CO2 regeneration. In cases 3 and 4, circa 0.68 and 0.29 Mt CO2 from ammonia plants in China and Canada could be sequestered annually in coal fields for ECBM production at approximately 5 and 6 €/t CO2, respectively.  相似文献   

8.
《能源学会志》2014,87(4):297-305
It is a win–win technology to inject CO2 into the oil or gas reservoirs. Because it can reduce the greenhouse gas emission and enhance oil recovery. In some oil or gas reservoirs, the reservoir water and the strong heterogeneity make the CO2 storage capacity difficult to be determined. In this research, the CO2 storage evaluation method is introduced. This method considers the CO2 displacement efficiency, the CO2 sweep efficiency, the CO2 dissolution in oil and gas and the CO2 displacement mechanism. The key factors in this evaluation method are determined by the reservoir simulation method, the thermodynamic theories and the statistical analysis methods separately. At last, the CO2 storage capacity evaluation system is built. This system can be used to evaluate the CO2 storage capacity fast and reliably and it worth to be promoted in the area of CO2 storage.  相似文献   

9.
Miscible gas injection is an approved profitable process that could significantly enhance oil recovery from different types of reservoirs while the major factor affecting its efficiency would be the minimum miscibility pressure (MMP) value. A recent experimental technique, known as vanishing interfacial tension (VIT), can estimate the MMP for gas–oil mixtures by measuring interfacial tension values and extrapolating them to zero at a sequence of pressures. Compositional simulation models are also useful in MMP determination by tuning an equation of state to compute the realistic phase behavior of reservoir fluid. In this paper, the capability and quality of MMP prediction via different methods such as laboratory slim tube tests, VIT technique, compositional simulation, and various empirical correlations were examined using a light oil sample taken from an Iranian carbonate reservoir, employing two pure gases of CO2 and N2 as the injectants. The accuracy and validation of the mentioned methods were then confirmed successfully by obtaining negligible overall absolute deviation percentages (AD%) compared with the conducted slim tube tests results.  相似文献   

10.
Over the years, there has been a rapid increase in atmospheric CO2 concentrations, from 280 ppm in 1850 to 360 ppm in 1998. Therefore, mitigation methods such as carbon sequestration in subsurface reservoirs have been suggested. CO2 sequestration is attractive, especially in relation to coal, with the additional potential benefit of CH4 recovery. However, the potential of CO2 sequestration is not well understood for various types of coals due to important in situ properties of coal. In this study, data from previous studies for coal permeability, density, moisture content, mineral content, vitrinite reflectance, compressive strength and temperature are compared with the CO2 adsorption results to understand the significance of these in situ coal properties on CO2 sequestration. To verify the findings, a custom‐designed advanced core flooding apparatus is used to simulate the effects of various in situ properties on CO2 sequestration. This apparatus can test samples of 203 mm in diameter and up to 1000 mm in length. Hence, heterogeneity effects can be understood, as previous CO2 sequestration‐related formulae have been based on coal samples of sizes ranging up to only about 100 mm. However, initially, a reconstituted coal core sample has been used to simplify the heterogeneity effects. Flow rates are estimated by analysing the lag of downstream pressures over time. With the use of a 203‐mm‐diameter and 816‐mm‐long reconstituted Victorian brown coal sample, flow rate reductions of 70% and 98% are observed for injection pressures of 2 and 4 MPa, respectively, due to CO2 injection. This study highlights the appropriateness of a candidate coal reservoir for CO2 storage in terms of in situ properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The rise in global temperature due to an unceasingly increase in non-condensable gases (NCG) prompts more development of safe and economical CCUS (Carbon Capture Utilization and Storage) technologies. Carbon dioxide (CO2) sequestration with heat mining in deep enhanced geothermal systems (EGSs) is one of the promising methods to reduce CO2 emitted to the atmosphere. In this study, a cyclic alternation of pressures at the injection and production wells is applied in an EGS for heat mining together with CO2 deposit. Simultaneous alternation of the injection and production pressures can significantly increase the amount of CO2 sequestrated compared to applying a fixed pumping or withdrawing pressures at the injector and producer respectively. At the injection well, alternation in pumping pressures at high frequency (small interval of days) increased CO2 sequestration rate. Reducing the pumping frequency resulted in the lowering of the total amount of CO2 sequestrated, lesser than using a fixed pumping pressure. The alternation in pumping frequency has a direct relationship to the CO2 sequestration rate. The frequency of the injection and production pressures refers to the interval in days of the interchange in pressure between high to a low value and vice-versa. Furthermore, simultaneous alternation of pressures at the injection and production wells respectively (double cyclic method) improved geothermal heat extraction efficiency, thus higher performance for both geothermal and CO2 sequestration projects.  相似文献   

12.
Significant reduction of CO2 emissions on a global scale may be achieved by reduction of energy intensity, by reduction of carbon intensity or by capture and storage of CO2. A portfolio of these methods is required to achieve the large reductions required; of which utilization of carbon sinks (i.e. material, geosphere and biosphere) will be an important player. Material sinks will probably only play a minor role as compared to biosphere and geosphere sinks in storage of CO2. Biosphere sinks are attractive because they can sequester CO2 from a diffuse source whereas geosphere sinks require a pure waste stream of CO2 (obtained by using expensive separation methods). On the other hand, environmental factors and storage time favor geosphere sinks. It is expected that a combination of the two will be used in order to meet emission reduction targets over the next 100 yr.A critical look is taken at capacities, retention/residence times, rates of uptake and relative cost of utilization of biosphere and geosphere sinks at three scales – global, national (Canada) and provincial (Alberta). Biosphere sinks considered are oceans, forests and soils. Geosphere sinks considered are enhanced oil recovery, coal beds, depleted oil and gas reservoirs and deep aquifers. The largest sinks are oceans and deep aquifers. The other biosphere and geosphere sinks have total capacities approximately of an order of lower magnitude. The sinks that will probably be used first are those that are economically viable such as enhanced oil-recovery, agriculture, forestry and possibly enhanced coalbed methane-recovery. The other sinks will be used when these options have been exhausted or are not available or a penalty (e.g. carbon tax) exists. Although the data tabulated for these sinks is only regarded as preliminary, it provides a starting point for assessment of the role of large sinks in meeting greenhouse gas emission reduction targets.  相似文献   

13.
This paper presents a mathematical model for designing a carbon dioxide (CO2) value chain. Storage of CO2 in geological formations is recognized as an important alternative for carbon abatement. When CO2 is deposited in oil reservoirs it can sometimes be used to achieve additional oil production, enhanced oil recovery (EOR). The model determines an optimal CO2 value chain from a fixed set of CO2 emission points and a set of potential injection sites. It designs a transport network and chooses the best suited oil fields with EOR potential or other geological formations for storage. A net present value criterion is used. The model is illustrated by an example of a Norwegian case with 14 oil fields, two aquifers and five CO2 sources. A sensitivity analysis is performed on the most important parameters.  相似文献   

14.
The addition of liquefied petroleum gas (LPG) to the CO2 stream reduces interfacial tension (IFT) between the injected gas and the reservoir oil, and it changes the gas-liquid relative permeability by making it more water-wet, which affects not only the oil mobility, but also the vertical sweep efficiency. The reduction of the IFT decreases vertical sweep efficiency because it enhances the relative permeability of the solvent, resulting in an increase in the viscous gravity number. For CO2-LPG enhanced oil recovery (EOR), oil recovery is enhanced by up to 47%, as compared to CO2 flooding, when the relative permeability change caused by the IFT is not considered. By taking the vertical sweep-out caused by IFT and relative permeability change into consideration, this increase is reduced to 40%. These results indicate the importance of considering the relative permeability and IFT change when predicting the performance of the CO2-LPG EOR process.  相似文献   

15.
In this research, utilizing the reservoir and produced oil data, different enhanced oil recovery (EOR) techniques known as in-situ combustion, CO2 flooding, and steam flooding were applied for Ashal’cha oil field in Republic of Tatarstan, Russia. For this purpose, In-Situ Combustion Predictive Model (ICPM), CO2 Miscible Flood Predictive Model (CO2PM) and Steam-flood Predictive Model (SFPM) are used. In addition to oil recovery, economic analysis of the discussed EOR applications was also conducted. By using the oil price forecast for 10 years, each EOR method is analyzed using their expenses and outcomes separately. Comparison among the EOR applications regarding the oil production, and economic feasibility was also given. Taking the reservoir and produced oil characteristics, oil production rate and economical payout time into account, it was observed that in-situ combustion is the most feasible and practical EOR method for Ashal’cha oil field.  相似文献   

16.
The research compares the simulations of two chemical looping gasification (CLG) types using the ASPEN Plus simulation software for the production of H2. The simulated biomass type was poultry litter (PL). The first CLG type used in situ CO2 capture utilizing a CaO sorbent, coupled with steam utilization for tar reforming, allowing for the production of a CO2-rich stream for sequestration. Near-total sorbent recovery and recycle was achieved via the CO2 desorption process. The second type utilized iron-based oxygen carriers in reduction–oxidation cycles to achieve 99.8% Fe3O4 carrier recovery and higher syngas yields. Temperature and pressure sensitivity analyses were conducted on the main reactors to determine optimal operating conditions. The optimal temperatures ranged from 500 to 1250 °C depending on the simulation and reactor type. Atmospheric pressure proved optimal in all cases except for the reducer and oxidizer in the iron-based CLG type, which operated at high pressure. This CLG simulation generated the most syngas in absolute terms (2.54 versus 0.79 kmol/kmol PL), while the CO2 capture simulation generated much more H2-rich syngas (92.45 mol-% compared to 62.94 mol-% H2).  相似文献   

17.
Abstract

Laboratory and field scale trials conducted so far indicate that injection of CO2 and N2 into deep coalbeds has the potential to enhance coalbed methane (ECBM) recovery while simultaneously sequestering CO2. The work has identified that the fundamental processes involved in CO2 sequestration/CBM recovery in deep coalbeds are not fully understood and further research is needed to advance this technology. ECBM is affected by several parameters; prominent among them are coal characteristics, in-situ conditions prevailing in deep coalbeds, and changes arising from the interaction of coal with various fluids. These parameters do not act independently, thereby making it difficult to isolate their impacts separately. An attempt has been made in this article to classify these parameters and understand their role in ECBM. Past work in this area is reviewed and the future work that is critical for an improved understanding of ECBM recovery is discussed.  相似文献   

18.
To improve coke oven gas (COG) energy conversion, alternative configurations for amplifying hydrogen from COG are proposed in this paper. In these new configurations, a CO2 adsorption enhanced hydrogen amplification reactor is combined with a pressure swing adsorption separation unit (PSA) to produce pure hydrogen. Hydrogen production was integrated with desorption gas utilization, in situ CO2 capture and waste heat recovery to improve COG energy conversion efficiency and decrease CO2 emissions. To analyze the advantages of the flowsheet modifications, technical and economic performance indicators were used to evaluate and compare the performances of the various system configurations. Simulation results show that the alternative configurations proposed in this paper have higher energy conversion efficiencies, higher hydrogen yields and shorter dynamic payback periods. The variation of technical performance with reaction temperature, pressure, sorbent to carbon ratio and steam to carbon ratio were also analyzed using a sensitivity study. Optimal operating conditions for the CO2 adsorption enhanced hydrogen amplification reactor were obtained based on the simulation results.  相似文献   

19.
Co-firing offers a near-term solution for reducing CO2 emissions from conventional fossil fuel power plants. Viable alternatives to long-term CO2 reduction technologies such as CO2 sequestration, oxy-firing and carbon loop combustion are being discussed, but all of them remain in the early to mid stages of development. Co-firing, on the other hand, is a well-proven technology and is in regular use though does not eliminate CO2 emissions entirely. An incremental gain in CO2 reduction can be achieved by immediate implementation of biomass co-firing in nearly all coal-fired power plants with minimum modifications and moderate investment, making co-firing a near-term solution for the greenhouse gas emission problem. If a majority of coal-fired boilers operating around the world adopt co-firing systems, the total reduction in CO2 emissions would be substantial. It is the most efficient means of power generation from biomass, and it thus offers CO2 avoidance cost lower than that for CO2 sequestration from existing power plants. The present analysis examines several co-firing options including a novel option external (indirect) firing using combustion or gasification in an existing coal or oil fired plant. Capital and operating costs of such external units are calculated to determine the return on investment. Two of these indirect co-firing options are analyzed along with the option of direct co-firing of biomass in pulverizing mills to compare their operational merits and cost advantages with the gasification option.  相似文献   

20.
《Energy》2002,27(7):647-674
The technical and economical feasibility of CO2 sequestration in deep coal layers combined with enhanced coalbed methane (ECBM) production in the Netherlands has been explored. Annually, 3.4 Mtonne CO2 from chemical installations can be delivered to sequestration locations at 15 €/tonne and another 55 Mtonne from power generating facilities at 40–80 €/tonne. Four potential ECBM areas have been assessed, of which Zuid Limburg is the best location for a test site, while the Achterhoek is more suitable for future large-scale CO2 sequestration. Between 54 Mtonne and 9 Gtonne CO2 can be sequestered in the four areas together, heavily depending on available technology for accessing the coal seams. At the same time, between 0.3 and 60 EJ of coalbed methane can be produced. The optimal configuration may have 1000 m spacing between production wells, and extreme inseam drilling. The price of coalbed methane may become competitive with natural gas when a bonus for CO2 sequestration is applied of about 25 €/tonne. For the long term, on-site hydrogen or power (SOFC) production with direct injection of produced CO2 seems most attractive. Further study is required, most notably more accurate geological surveys, assessment of drilling costs in Dutch context, and environmental impacts of ECBM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号