首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Slow pyrolysis of giant mullein (Verbascum thapsus L.) stalks have been carried out in a fixed-bed tubular reactor with (Al2O3, ZnO) and without catalyst at four different temperatures between 400 to 550°C with a constant heating rate of 50°C/min and with a constant sweeping gas (N2) flow rate of 100 cm3/min. The amounts of bio-char, bio-oil, and gas produced were calculated and the compositions of the obtained bio-oils were determined by gas chromatography-mass spectrometry. The effects of pyrolysis parameters, such as temperature and catalyst, on the product yields were investigated. The results show that both temperature and catalyst have significant effects on the conversion of Verbascum thapsus L. into solid, liquid, and gaseous products. The highest liquid yield of 40.43% by weight including the aqeous phase was obtained with 10% zinc oxide catalyst at 500°C temperature. Sixty-seven different products were identified by gas chromatography-mass spectrometry in the bio-oils obtained at 500°C temperature.  相似文献   

2.
This study reports the experimental results for the pyrolysis of pistachio shell under different conditions in a tubular reactor under a nitrogen flow. For the different conditions of pyrolysis temperature, nitrogen flow rate and heating rate, pyrolysis temperature of 773 K gave the highest bio-oil yield with a value of 27.7% when the heating rate and carrier gas flow rate were chosen as 300 K min−1 and 100 cm3 min−1, respectively. Column chromatography was applied to this bio-oil and its subfractions were characterized by elemental analysis, FT-IR and 1H-NMR. Aliphatic subfraction was conducted to gas chromatography–mass spectroscopy for further characterization. The results for the characterization show that using pistachio shell as a renewable source to produce valuable liquid products is applicable via pyrolysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
以松木锯末、花生壳、大豆秸秆等几种典型生物质为试验原料,在流化床反应器内进行了热解试验,分别考察了热解反应温度、停留时间、进料量对生物质热解产物(油、气、炭)产率的影响,以及这几种生物质原料热解产油率的最佳工艺条件.运用GC/MS方法确认了生物质热解油中的40种化合物,生物质热解油的GC/MS法分析结果为其在化工和能源方面的综合利用提供了有价值的数据.  相似文献   

4.
This study introduces an innovative process of generating hydrogen-rich gas from biomass through the catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. Water hyacinth was used as the biomass feedstock. The effects of various factors such as pyrolysis temperature, catalytic bed temperature, residence time, catalyst, and the nickel content of the catalyst on the pyrolysis productivity were investigated and the yields of H2, CO, CH4, and CO2 were obtained. Results showed that the high productivity of hydrogen can be obtained particularly by increasing the catalytic bed temperature, residence time, and catalysts. The favorable reaction conditions are as follows: a first-stage pyrolysis temperature of 650 °C–700 °C, a second-stage catalytic bed temperature of 800 °C, a catalytic pyrolysis reaction time of 17 min, and a nickel content of 9% (wt %).  相似文献   

5.
In the present work, fast pyrolysis of Alternanthera philoxeroides was evaluated with a focus to study the chemical and physical characteristics of bio-oil produced and to determine its practicability as a transportation fuel. Pyrolysis of A.philoxeroides was conducted inside a semi batch quartz glass reactor to determine the effect of different operating conditions on the pyrolysis product yield. The thermal pyrolysis of A. philoxeroides were performed at a temperature range from 350 to 550 °C at a constant heating rate of 25 °C/min & under nitrogen atmosphere at a flow rate of 0.1 L/min, which yielded a total 40.10 wt.% of bio-oil at 450 °C. Later, some more sets of experiments were also performed to see the effect on pyrolysis product yield with change in operating conditions like varying heating rates (50 °C/min, 75 °C/min & 100 °C/min) and different flow rates of nitrogen (0.2, 0.3, 0.4 & 0.5 L/min). The yield of bio-oil during different heating rate (25, 50, 75 and 100 °C/min) was found to be more (43.15 wt.%) at a constant heating rate of 50 °C/min with 0.2 L/min N2 gas flow rate and at a fixed pyrolysis temperature of 450 °C. The High Heating Value (HHV) value of bio-oil (8.88 MJ/kg) was very less due to presence of oxygen in the biomass. However, the high heating value of bio-char (20.41 MJ/kg) was more, and has the potential to be used as a solid fuel. The thermal degradation of A. philoxeroides was studied in TGA under inert atmosphere. The characterization of bio-oil was done by elemental analyser (CHNS/O analyser), FT-IR, & GC/MS. The char was characterized by elemental analyser (CHNS/O analysis), SEM, BET and FT-IR techniques. The chemical characterization showed that the bio-oil could be used as a transportation fuel if upgraded or blended with other fuels. The bio-oil can also be used as feedstock for different chemicals. The bio-char obtained from A. philoxeroides can be used for adsorption purposes because of its high surface area.  相似文献   

6.
Fixed-bed slow pyrolysis experiments have been conducted on a sample of safflower seed to determine particularly the effects of pyrolysis temperature, heating rate, particle size and sweep gas flow rate on the pyrolysis product yields and their chemical compositions. The maximum oil yield of 44% was obtained at the final pyrolysis temperature of 500°C, particle size range of +0.425–1.25 mm, with heating rate of 5°C min−1 and sweep gas (N2) flow rate of 100 cm3 min−1 in a fixed-bed lab-scale reactor. Chromatographic and spectroscopic studies on the pyrolytic oil showed that the oil obtained from safflower seed can be used as a renewable fuel and chemical feedstock with a calorific value of 41.0 MJ/kg and empirical formula of CH1.92O0.11N0.02.  相似文献   

7.
Fast pyrolysis of kraft lignin with partial (air) oxidation was studied in a bubbling fluidized bed reactor at reaction temperatures of 773 and 823 K. The bio-oil vapors were fractionated using a series of three condensers maintained at desired temperatures, providing a dry bio-oil with less than 1% water and over 96% of the total bio-oil energy.Oxygen feed was varied to study its effect on yield, composition, and energy recovery in the gas, char and oil products. The addition of oxygen to the pyrolysis process increased the production of gases such as CO and CO2. It also changed the dry bio-oil properties, reducing its heating value, increasing its oxygen content, reducing its average molecular weight and tar concentration, while increasing its phenolics concentration. The lower reaction temperature of 773 K was preferred for both dry bio-oil yield and quality.Autothermal operation of the pyrolysis process was achieved with an oxygen feed of 72 or 54 g per kg of biomass at the reaction temperatures of 773 and 823 K, respectively. Autothermal operation reduced both yield and total energy content of the dry bio-oil, with relative reductions of 24 and 20% for the yield, 28 and 23% for the energy content, at 773 and 823 K.  相似文献   

8.
Product distributions from the pyrolysis of a common sample of pine-wood have been determined for two reactors with different configurations. The ablative pyrolysis reactor operates on the principle of “scraping” a continuous stream of biomass particles onto a heated surface under conditions of high relative motion and high applied pressure. In the wire-mesh reactor configuration, fine dispersion of a small quantity [4–6 mg] of sample and the rapid removal of volatiles from the reaction zone ensures that volatiles released during pyrolysis are captured under conditions minimising extra particle secondary reactions.

Comparison of liquid yields determined for the two reactors has been undertaken in order to assess the effect of secondary reactions on yields during ablative pyrolysis. Structural characterisations and comparison of liquids produced in the two reactors have been carried out by size exclusion chromatography, UV-fluorescence spectroscopy and FTIR spectroscopy. Slight differences in structures were apparent either due to cracking of lignin-derived macromolecules on the heated reactor surface or low molecular weight components formed during slow pyrolysis reactions of a small proportion of the feed material. Comparison of the ablative liquids with those from other ablative pyrolysis reactors show similar trends in molecular mass distributions and structures suggesting that the ablative pyrolysis process inherently cracks some liquids during volatilisation. Dry organic liquid yields from the ablative pyrolysis reactor were between 2.5 and 5.3% lower than the wire-mesh reactor between 55° and 600°C. This is believed to be a result of non-optimised reactor operation of the ablative pyrolysis reactor.  相似文献   


9.
Pyrolysis is one of the potential routes to harmless energy and useful chemicals from biomass. The pyrolysis of Albizia amara was studied for determining the main characteristics and quantities of liquid products. Particular investigated process variables were temperature from 350 to 550°C, particle size from 0.6 to 1.25 mm, and heating rate from 10 to 30 °C/min. The maximum bio-oil yield of 48.5 wt% at the pyrolysis temperature of 450°C was obtained at the particle size of 1.0 mm and at the heating rate of 30 °C/min. The bio-oil product was analyzed for physical, elemental, and chemical composition using Fourier transform infrared spectroscopy and gas chromatography spectroscopy. The bio-oil contains mostly phenols, alkanes, alkenes, saturated fatty acids and their derivatives. According to the experimental results, the pyrolysis bio-oil can be used as low-grade fuel having heating value of 18.63 MJ/kg and feedstock for chemical industries.  相似文献   

10.
块状废轮胎固定床热解特性实验研究   总被引:1,自引:0,他引:1  
国内外对于废旧轮胎热解的研究大多集中在对轮胎小颗粒的探索上,对于破碎成本较低的大块状轮胎的热解较少有人涉及.为了探究块状轮胎的热解特性,文章在外热式固定床热解炉上进行了不同热解温度下块状废轮胎热解特性的实验研究.结果表明:块状废轮胎热解产生的燃气成分主要为CH4,H2以及大分子烃类CnHm,且其燃气产率随热解温度的升高而增加.当热解温度高于550℃时,热解产物CnHm有二次裂解现象,热解产生的燃气具有较高热值;热解温度为600℃时,燃气热值可以达到26 MJ/m3;随着热解温度的提高,热解炭中挥发分含量减少,固定碳含量略有增加,热解温度对热解油及热解气产率影响明显.与小颗粒轮胎相比,块状轮胎热解气中小分子气体CH4,H2等含量相对较少,而大分子烃类含量相对较多.热解产物产率方面,热解炭和热解气的产率更大,焦油产率降低.  相似文献   

11.
Fixed‐bed fast pyrolysis experiments have been conducted on a sample of cottonseed cake to determine the effects of pyrolysis temperature, heating rate and sweep gas flow rate on pyrolysis yields and chemical compositions of the product oil. The liquid products and the subfractions of pentane soluble part were characterized by elemental analysis, FT‐IR spectroscopy, 1H‐NMR spectroscopy and pentane subfraction was analysed by gas chromatography. The maximum oil yield of 34.8% was obtained at final temperature of 550°C with a heating rate of 700°C min?1 and nitrogen flow rate of 100 cm3 min?1. Chromatographic and spectroscopic studies on bio‐oil have shown that the oils obtained from cottonseed cake can be used as a renewable fuel and chemical feedstock. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
《能源学会志》2020,93(2):695-710
The Fe–Ca catalysts in catalytic pyrolysis of brown coals were studied to investigate the catalytic activity of the Fe–Ca in a fixed-bed reactor. Experimental results showed the maximum yields of the light aromatic hydrocarbons (LAHs) were 5.90 wt% (0.88 wt% of benzene, toluene and xylene ‘BTX’, 4.10 wt% of phenol and cresol ‘PC’ and 0.92 wt% of naphthalene) when the 1.5% Ca was added into 5% Fe-loaded brown coal. The yields of water and gas significantly reduced, the tar yield gradually increased with increasing heating rate. The characterization results indicated that when calcium promoter was impregnated with iron, Ca2Fe2O5, CaO, Fe2O3 and α-Fe were formed on the surface of the coal char, Ca2Fe2O5 and α-Fe decomposed polyaromatic tar, CaO and Fe2O3 accelerated water gas shift reaction to enhance the H2 yield, the Fe2O3 and Ca2Fe2O5 could be reduced to α-Fe by volatiles (C, CO and H2) under high temperature catalytic pyrolysis. The synergistic effects between iron and calcium improved brown coal pyrolysis and the volatiles such as free radical fragments were further pyrolyzed, indicating that Fe–Ca catalysts inhibited α-Fe deactivation by tar and carbon deposition, thus promoting brown coal pyrolysis and formation of COx, H2 and LAHs.  相似文献   

13.
According to the differences in components, three representative components (plastic, kitchen garbage and wood) in municipal solid waste (MSW) were pyrolyzed in a fixed bed reactor to evaluate the influence of particle size on pyrolysis performance of single-component municipal solid waste (MSW). The bed temperature was set at 800°C and each sample was separated into three different size fractions (0–5 mm, 5–10 mm and 10–20 mm). The results show for all the samples particle size has an effect on pyrolysis product yields and composition: smaller particle size results in higher gas yield with less tar and char; the decrease of particle size can increase H2 and CO contents of gas, as well as the ash and carbon element contents in the char. And the influence is the much more significant for sample with higher fixed carbon and ash contents, such as kitchen garbage, and less for sample with higher volatile content, plastic in the test.  相似文献   

14.
《能源学会志》2020,93(4):1737-1746
The aim of this study was to investigate the potential of combined catalyst (ZSM-5 and CaO) for high quality bio-oil production from the catalytic pyrolysis of pinewood sawdust that was performed in Py-GC/MS and fixed bed reactor at 500 °C. In Py-GC/MS, the maximum yield of aromatic hydrocarbon was 36 wt% at biomass to combined catalyst ratio of 1:4 where the mass ratio of ZSM-5 to CaO in the combined catalyst was 4:1. An increasing trend of phenolic compounds was observed with an increasing amount of CaO, whereas the highest yield of phenolic compounds (31 wt%) was recorded at biomass to combined catalyst ratio of 1:4 (ZSM-5: CaO - 4:1). Large molecule compounds could be found to crack into small molecules over CaO and then undergo further reactions over zeolites. The water content, higher heating value, and acidity of bio-oil from the fixed bed reactor were 21%, 24.27 MJkg−1, and 4.1, respectively, which indicates that the quality of obtained bio-oil meets the liquid biofuel standard ASTM D7544-12 for grade G biofuel. This research will provide a significant reference to produce a high-quality bio-oil from the catalytic pyrolysis of woody biomass over the combined catalyst at different mass ratios of biomass to catalyst.  相似文献   

15.
《可再生能源》2016,(12):1886-1890
分别以花生壳和松木屑为原料在固定床上进行低温热解实验,探究热解温度对热解产物产率的影响。利用气相色谱-质谱联用仪(GC-MS)对热解所得生物油组分进行定性分析,并对生物油中的愈创木酚进行定量分析。结果表明:花生壳和松木屑热解过程中半焦的产率都随热解温度的升高而降低;生物油的产率都随热解温度的升高先升高后降低,且都在500℃达到最大值,最大产率分别为13.14%和20.41%;热解气体的产率都随热解温度的升高而升高。两种生物质热解生物油中各类组分的含量随热解温度的升高发生不同的变化,其中愈创木酚的含量都随热解温度的升高先升高后降低,并在400℃达到最大值。  相似文献   

16.
Utilization of Cissus quadrangularis Linn (CQ) for producing hydrocarbonaceous bio-oil and biochar in a fixed bed pyrolysis at 550°C was studied. Rapid and progressive thermal decompositions took place between 220 and 550°C. Elemental composition of the biomass shows 12.32% moisture and 67.97% volatiles. Spectroscopic and chromatographic analysis of bio-oil having a calorific value of 26.58 MJ/kg elucidates 15 different chemicals of different functional groups. Two major chemicals (ethanol, pentamethyl, and benzedrex) dominate at around 60% of the chemicals identified in the bio-oil. Biochar could be a possible source of activated carbon for suntan lotion producing industries.  相似文献   

17.
There is much interest in producing hydrogen (H2) and hydrogen carriers from various materials, including rubbery wastes to help in the fulfilment of the predicted H2 economy. In this paper, simple and catalytic pyrolysis have been investigated for their suitability in producing gaseous fuels from waste tyres. Dihydrogen, alkane and alkene fuels production from tire wastes was carried out in a laboratory bench installation using a fixed bed reaction system at 500 °C and with a catalyst/waste ratio of 0.03. This last ratio is very low, which constitutes an interesting payoff in the plant costs. Investigations to valorise the three yielded by-products involved different combinations of four catalysts, three solid supports and three configurations of bed position. The results presented in this study concerned the gaseous phase, the yields of which varied from 17 to 32 wt%. The potential of H2 production was significantly increased from 14 to 32 vol% by using MgO–based catalytic bed supported by a layer of oyster shells. It was also found that the low heating value of the pyrolytic gas was ameliorated from 10 to 44 MJ/Nm3. The yield of H2S is focused on as it might increase the plant costs due to its relative post-treatment units.  相似文献   

18.
Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was employed to achieve fast pyrolysis of xylan and on-line analysis of pyrolysis vapors. Tests were conducted to investigate the effects of temperature on pyrolytic products, and to reveal the effect of HZSM-5 and M/HZSM-5 (M= Fe, Zn) zeolites on pyrolysis vapors. The results showed that the total yield of pyrolytic products first increased and then decreased with the increase of temperature from 350°C to 900°C. The pyrolytic products were complex, and the most abundant products included hydroxyacetaldehyde, acetic acid, 1-hydroxy-2-propanone, 1-hydroxy-2-butanone and furfural. Catalytic cracking of pyrolysis vapors with HZSM-5 and M/HZSM-5 (M= Fe, Zn) catalysts significantly altered the product distribution. Oxygen-containing compounds were reduced considerably, and meanwhile, a lot of hydrocarbons, mainly toluene and xylenes, were formed. M/HZSM-5 catalysts were more effective than HZSM-5 in reducing the oxygen-containing compounds, and therefore, they helped to produce higher contents of hydrocarbons than HZSM-5.  相似文献   

19.
ExperimentalandModelingInvestigationofCoalGasificationinaFluidizedBedReactorExperimentalandModelingInvestigationofCoalGasific...  相似文献   

20.
Carbonisation experiments on samples of sugar cane bagasse were conducted in a static fixed bed reactor to determine the effect of process variables such as temperature, heating rate, inert sweep gas flow rate and particle size on the yield and composition of solid product char. Experiments were performed to the final temperatures of 250–700°C with heating rates from 5 to 30°C/min with nitrogen sweep gas flow rate of 350 cc/min. Additional tests were aimed at studying the effect of different flow rates of nitrogen sweep gas from 0 to 700 cc/min during carbonization and different particle size fractions of bagasse. The results showed that as the carbonisation temperature was increased, the yield of char decreased. The reduction in yield was rapid up to a final temperature of 500°C and was slower thereafter. The yield of char was relatively insensitive to the changes in heating rate and particle size. Increasing the sweep gas flow rate to 350 cc/min reduced the yield of char. It appears the presence of inert sweep gas reduced secondary reactions which promoted char formation. The proximate analysis of the char suggests that fixed carbon and ash content increased with temperature. The char obtained at temperatures higher than 500°C have high carbon content and is suitable as renewable fuel and for other applications. The carbonization of bagasse has the potential to produce environmental friendly fuels and can assist in reducing deforestation for the production of charcoal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号