首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Fair queueing of rate and delay-sensitive packet flows in a shared-medium, multihop wireless network is challenging due to the unique design issues. These issues include: 1) spatial contention among transmitting flows in a spatial locality, as well as spatial reuse of bandwidth through concurrent flow transmissions in different network locations; 2) conflicts between ensuring fairness and maximizing spatial channel reuse; and 3) the distributed nature of ad hoc fair queueing. In this paper, we propose a new topology-independent fair queueing model for a shared-medium ad hoc network. Our fairness model ensures coordinated fair channel access among spatially contending flows, while seeking to maximize spatial reuse of bandwidth. We describe packetized algorithms that realize the fluid fairness model with analytical performance bounds. We further design a distributed implementation which approximates the ideal centralized algorithm. We present simulations and analysis on the performance of our proposed algorithms.  相似文献   

2.
一种提高802.11无线Ad Hoc网络公平性的新机制-FFMA   总被引:1,自引:0,他引:1       下载免费PDF全文
实现多个数据流对无线信道的公平共享是802.11无线Ad Hoc网络中的一个重要议题,但802.11DCF机制在无线Ad Hoc网络中存在严重的公平性问题,甚至有可能出现单个节点或数据流独占信道而其他节点和数据流处于"饥饿"状态的情况.论文提出了一种新颖的保证数据流间公平性的MAC层接入机制FFMA(Flow rate-based Fair Medium Access),通过公平调度和公平竞争的方式,FFMA能够在数据流间公平地分配信道带宽资源.仿真结果表明,在无线Ad Hoc网络中,FFMA可以在保证信道吞吐量的前提下取得远优于802.11 DCF的数据流间的公平性.  相似文献   

3.
In recent years, there has been an increasing interest to deliver multimedia services over wireless ad hoc networks. Due to the existence of hidden terminal and absence of central control, the medium access control protocol as used in the ad hoc networks may lead to channel capture, where some flows monopolize the channel while others suffer from starvation. As a consequence, the system throughput and fairness are greatly degraded. After showing that static power control leads to channel capture, we propose and study a distributed dynamic power control scheme termed "power adaptation for starvation avoidance" (PASA), which dynamically adjusts the transmission power of a node so as to avoid starvation. PASA is shown to be effective in breaking channel captures, hence improving short-term fairness among contending flows. It is simple, fully autonomous and requires no communication overhead. Via extensive simulations, we show that our power control algorithm achieves much better fairness without compromising system throughput through better spatial reuse. Our experiments with video sequences transmitting over different network topologies show that PASA achieves much better video quality with lower start-up delay and buffer requirement.  相似文献   

4.
The shared-medium multihop nature of wireless ad hoc networks poses fundamental challenges to the design of effective resource allocation algorithms that are optimal with respect to resource utilization and fair across different network flows. None of the existing resource allocation algorithms in wireless ad hoc networks have realistically considered end-to-end flows spanning multiple hops. Moreover, strategies proposed in wireline networks are not applicable in the context of wireless ad hoc networks, due to their unique characteristics of location-dependent contention. In this paper, we propose a new price-based resource allocation framework in wireless ad hoc networks to achieve optimal resource utilization and fairness among competing end-to-end flows. We build our pricing framework on the notion of maximal cliques in wireless ad hoc networks, as compared to individual links in traditional wide-area wireline networks. Based on such a price-based theoretical framework, we present a two-tier iterative algorithm. Distributed across wireless nodes, the algorithm converges to a global network optimum with respect to resource allocations. We further improve the algorithm toward asynchronous network settings and prove its convergence. Extensive simulations under a variety of network environments have been conducted to validate our theoretical claims.  相似文献   

5.
Fair scheduling is an ideal candidate for fair bandwidth sharing and thereby achieving fairness among the contending flows in a network. It is particularly challenging for ad hoc networks due to infrastructure free operation and location dependent contentions. As there is no entity to serve coordination among nodes, we need a mechanism to overcome inherent unreliability of the network to provide reduced collision and thereby higher throughput and adequate fair allocation of the shared medium among different contending flows. This paper proposes a flow rank based probabilistic fair scheduling technique. The main focus is to reduce the collision probability among the contending flows while maintaining the prioritized medium access for those flows, which ensures a weighted medium access control mechanism based on probabilistic round robin scheduling. Each flow maintains a flow-table upon which the rank is calculated and backoff value is assigned according to the rank of the flow, i.e., lower backoff interval to lower ranked flow. However, flow-table instability due to joining of a new flow, partially backlogged flow, hidden terminal and partially overlapped region exhibits a challenging problem that needs to be mitigated for our mechanism to work properly. We take appropriate measures to make the flow-table stabilized under such scenarios. Results show that our mechanism achieves better throughput and fairness compared to IEEE 802.11 MAC and existing ones.  相似文献   

6.
In multihop wireless ad-hoc networks, the medium access control (MAC) protocol plays a key role in coordinating the access to the shared medium among wireless nodes. Currently, the distributed coordination function (DCF) of the IEEE 802.11 is the dominant MAC protocol for both wireless LANs and wireless multihop ad hoc environment due to its simple implementation and distributed nature. The current access method of the IEEE 802.11 does not make efficient use of the shared channel due to its conservative approach in assessing the level of interference; this in turn affects the spatial reuse of the limited radio resources and highly affect the achieved throughput of a multihop wireless network. This paper surveys various methods that have been proposed in order to enhance the channel utilization by improving the spatial reuse.  相似文献   

7.
A Packet Scheduling Approach to QoS Support in Multihop Wireless Networks   总被引:1,自引:0,他引:1  
Providing packet-level quality of service (QoS) is critical to support both rate-sensitive and delay-sensitive applications in bandwidth-constrained, shared-channel, multihop wireless networks. Packet scheduling has been a very popular paradigm to ensure minimum throughput and bounded delay access for packet flows. This work describes a packet scheduling approach to QoS provisioning in multihop wireless networks. Besides minimum throughput and delay bounds for each flow, our scheduling disciplines seek to achieve fair and maximum allocation of the shared wireless channel bandwidth. However, these two criteria can potentially be in conflict in a generic-topology multihop wireless network where a single logical channel is shared among multiple contending flows and spatial reuse of the channel bandwidth is possible. In this paper, we propose a new scheduling model that addresses this conflict. The main results of this paper are the following: (a) a two-tier service model that provides a minimum fair allocation of the channel bandwidth for each packet flow and additionally maximizes spatial reuse of bandwidth, (b) an ideal centralized packet scheduling algorithm that realizes the above service model, and (c) a practical distributed backoff-based channel contention mechanism that approximates the ideal service within the framework of the CSMA/CA protocol.  相似文献   

8.
OMAR: Utilizing Multiuser Diversity in Wireless Ad Hoc Networks   总被引:1,自引:0,他引:1  
One of the most promising approaches to improving communication efficiency in wireless communication systems is the use of multiuser diversity. Although it has been widely investigated and shown feasible and efficient in cellular networks, there is little work for the ad hoc networks, especially in real protocol and algorithm design. In this paper, we propose a novel scheme, namely, the opportunistic medium access and auto rate (OMAR), to efficiently utilize the shared medium in IEEE 802.11-based ad hoc networks by taking advantage of diversity, distributed scheduling, and adaptivity. In an ad hoc network, especially in a heterogeneous ad hoc network or a mesh network, some nodes may need to communicate with multiple one-hop nodes. We allow such a node with a certain number of links to function as a clusterhead to locally coordinate multiuser communications. We introduce a CDF-based (cumulative distribution function) K-ary opportunistic splitting algorithm and a distributed stochastic scheduling algorithm to resolve intra and intercluster collisions, respectively. Fairness is formulated and solved in terms of social optimality within and across clusters. Analytical and simulation results show that our scheme can significantly improve communication efficiency while providing social fairness  相似文献   

9.
Dynamic Bandwidth Management in Single-Hop Ad Hoc Wireless Networks   总被引:1,自引:0,他引:1  
Distributed weighted fair scheduling schemes for Quality of Service (QoS) support in wireless local area networks have not yet become standard. Therefore, we propose an Admission Control and Dynamic Bandwidth Management scheme that provides fairness and a soft rate guarantee in the absence of distributed MAC-layer weighted fair scheduling. This scheme is especially suitable for smart-rooms where peer-to-peer multimedia transmissions need to adapt their transmission rates co-operatively. We present a mapping scheme to translate the bandwidth requirements of an application into its channel time requirements. The center piece of our scheme is a Bandwidth Manager, which allots each flow a share of the channel, depending on the flow's requirements relative to the requirements of other flows in the network. Admitted flows control their transmission rates so they only occupy the channel for the fraction of time allotted to them. Thus co-operation between flows is achieved and the channel time is fair shared. As the available channel capacity changes and the traffic characteristics of various flows change, the Bandwidth Manager dynamically re-allocates the channel access time to the individual flows. Our simulation experiments show that, at a very low cost and with high probability, every admitted flow in the network will receive at least its minimum requested share of the network bandwidth. We also present extensive testbed experiments with our scheme using a real-time audio streaming application running between Linux laptops equipped with standard IEEE 802.11 network cards.  相似文献   

10.
高效、公平的MAC协议是目前无线多跳Ad hoc网络研究的关键问题之一。该文在给出一种新的无线多跳Ad hoc网络的网络模型前提下,定义了MAC协议公平性、网络容量利用率两个性能参数。给出了一种能在竞争节点间公平共享无线信道并充分利用网络容量的MAC协议(FMAC),仿真比较了FMAC和IEEE 802.11 DCF的公平性和网络容量利用率。结果表明FMAC能在充分利用网络容量的前提下,实现无线信道在竞争节点间的公平共享。  相似文献   

11.
This work presents a novel scheduler, exponential-rule fair queueing (EFQ), for fair scheduling in wireless networks with a multi-state channel. EFQ prefers flows destined to high-capacity channels to maintain a high throughput, and prefers flows with serious lagging to ensure excellent fairness. Simulation results demonstrate that EFQ not only provides higher throughput, but also maintains superior fairness, than existing schemes.  相似文献   

12.
This paper proposes a new principle for designing MAC protocols for CDMA-based ad hoc networks - inducing spatial clustering in contending transmitters/receivers. We first highlight the advantages of CDMA in handling quality of service (QoS) requirements, enhancing energy efficiency, and enabling spatial multiplexing of bursty traffic. Then, based on stochastic geometric models and simulation, we show how idealized contention resolution among randomly distributed nodes results in clustering of successful transmitters and receivers, in turn leading to efficient spatial reuse. This motivates the central idea of the paper which is to explicitly induce clustering among contending nodes to achieve even better spatial reuse. We propose two distributed mechanisms to realize such clustering and show substantial capacity gains over simple random access/ALOHA-like and even RTS/CTS-based protocols. We examine under what regimes such gains can be achieved, and how clustering and contention resolution mechanisms should be optimized to do so. We propose the design of ad hoc networks supporting hop-by-hop relaying on different spatial scales. By allowing nodes to relay beyond the set of nearest neighbors using varying transmission distances (scales), one can reduce the number of hops between a source and destination so as to meet end-to-end delay requirements. To that end we propose a multi-scale MAC clustering and power control mechanism to support transmissions with different ranges while achieving high spatial reuse. The considerations, analysis and simulations included in this paper suggest that the principle of inducing spatial clustering in contention has substantial promise towards achieving high spatial reuse, QoS, and energy efficiency in CDMA ad hoc networks.  相似文献   

13.
In this paper, we model the network throughput gains of two types of wireless network coding (NC) schemes, including the conventional NC and the analog NC schemes, over the traditional non-NC transmission scheduling schemes in multihop, multi-channel, and multi-radio wireless ad hoc networks. In particular, we first show that the network throughput gains of the conventional NC and analog NC are (2n)/(2n-1) and n/(n-1), respectively, for the n-way relay networks where n ges 2. Second, we propose an analytical framework for deriving the network throughput gain of the wireless NC schemes over general wireless network topologies. By solving the problem of maximizing the network throughput subject to the fairness requirements under our proposed framework, we quantitatively analyze the network throughput gains of these two types of wireless NC schemes for a variety of wireless ad hoc network topologies with different routing strategies. Finally, we develop a heuristic joint link scheduling, channel assignment, and routing algorithm that aims at approaching the optimal solution to the optimization problem under our proposed framework.  相似文献   

14.
In a distributed mobile computing system, an efficient packet scheduling policy is a crucial component to achieve a high utilization of the precious bandwidth resources while satisfying users' QoS (quality of service) demands. An important class of scheduling techniques, namely, the wireless fair queueing algorithms, have been extensively studied recently. However, a major drawback in existing approaches is that the channel model is overly simplified – a two-state channel (good or bad) is assumed. While it is relatively easy to analyze the system using such a simple model, the algorithms so designed are of a limited applicability in a practical environment, in which the level of burst errors is time-varying and can be exploited by using channel adaptive coding and modulation techniques. In this paper, we first argue that the existing algorithms cannot cater for a more realistic channel model and the traditional notion of fairness is not suitable. We then propose a new notion of fairness, which bounds the actual throughput normalized by channel capacity of any two data connections. Using the new fairness definition, we propose a new fair queueing algorithm called CAFQ (Channel Adaptive Fair Queueing), which, as indicated in our numerical studies, outperforms other algorithms in terms of overall system throughput and fairness among error prone connections.  相似文献   

15.
In the time varying wireless channel, opportunistic scheduling is one of the important techniques to achieving the rich diversities inherent in wireless communications. However, most existing scheduling schemes require centralized scheduling and little work has been done on developing distributed algorithms The proportional fair scheduling is one of the representative opportunistic scheduling for centralized networks. In this paper, we propose distributed proportional fair scheduling (DPFS) scheme for wireless LAN network. In the proposed DPFS scheme, each receiver estimates channel condition and calculates independently its own priority with probabilistic manner, which can reduce excessive probing overhead required to gather the channel conditions of all receivers. We evaluate the proposed DPFS using extensive simulation and simulation results show that DPFS obtains higher network throughput than conventional scheduling schemes while maintaining fairness among users.  相似文献   

16.
Efficient resource management is a major challenge in the operation of wireless systems, especially energy-constrained ad hoc networks. In this paper, we propose a cross-layer optimization framework to jointly design the scheduling and power control in wireless ad hoc networks. We study the system performance by combining scheduling, power control, and adaptive modulation. Specifically, the transmitted power and constellation size are dynamically adapted based on the packet arrival, quality of service (QoS) requirements, power limits, and channel conditions. A key feature of the proposed method is that it facilitates a distributed implementation, which is desirable in wireless ad hoc networks. The performance of our proposed methodology will be investigated in ad hoc networks supporting unicast as well as multicast traffic. Simulation results will show that the proposed scheme achieves significant gains in both the single-hop throughput and power efficiency compared with the existing method, which implements the scheduling through a central controller, and adopts power control with fixed modulation  相似文献   

17.
Moving toward 4G, wireless ad hoc networks receive growing interest due to users' provisioning of mobility, usability of services, and seamless communications. In ad hoc networks fading environments provide the opportunity to exploit variations in channel conditions, and transmit to the user with the currently "best" channel. In this article two types of opportunistic transmission, which leverage time diversity and multi-user diversity, respectively, are studied. Considering the co-channel interference and lack of a central controller in ad hoc networks, the "cooperative and opportunistic transmission" concept is promoted. For opportunistic transmission that exploits time diversity, it is observed that the inequality in channel contention due to the hidden terminal phenomenon tends to result in energy inefficiency. Under this design philosophy, we propose a distributed cooperative rate adaptation (CRA) scheme to reduce overall system power consumption. Taking advantage of the time-varying channel among different users/receivers and being aware of the potential contention among neighboring transmissions, we propose a QoS-aware cooperative and opportunistic scheduling (COS) scheme to improve system performance while satisfying QoS requirements of individual flows. Simulation results show that by leveraging node cooperation, our proposed schemes, CRA and COS, achieve higher network throughput and provide better QoS support than existing work  相似文献   

18.
Fair queueing in the wireless domain poses significant challenges due to unique issues in the wireless channel such as location-dependent and bursty channel errors. In this paper, we present a wireless fair service model that captures the scheduling requirements of wireless scheduling algorithms, and present a unified wireless fair queueing architecture in which scheduling algorithms can be designed to achieve wireless fair service. We map seven recently proposed wireless fair scheduling algorithms to the unified architecture, and compare their properties through simulation and analysis. We conclude that some of these algorithms achieve the properties of wireless fair service including short-term and long-term fairness, short-term and long-term throughput bounds, and tight delay bounds for channel access.  相似文献   

19.
Ad hoc网络是一种没有固定基础设施,由多个带有无线收发装置的移动终端组成的多跳临时性自治系统。它独特的个性决定了各数据流之间要竞争共享的有限带宽资源。因此,为了保证Ad hoc网络业务的服务质量,合理的带宽分配机制至关重要。介绍了无线Ad hoc网络的网络模型,对带宽分配机制的定义及约束条件进行描述分析,然后从公平的角度详细地分析了目前Ad hoc网络的带宽分配机制,并总结了各种分配机制的优缺点。  相似文献   

20.
In wireless multihop networks, communication between two end-nodes is carried out by hopping over multiple wireless links. However, the fact that each node has to transmit not only its own traffic, but also traffic on behalf of other nodes, leads to unfairness among the communication rates of the nodes. Traditional Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) based media access control does not work satisfactory in a multihop scenario, since an intended target of a communication may be subject to mutual interference imposed by concurrent transmissions from nodes, which cannot directly sense each other, thus causing unfair throughput allocation. Although Time Division Multiple Access (TDMA) seems to be a more promising solution, careful transmission scheduling is needed in order to achieve error-free communication and fairness. Several algorithms may be found in the literature for scheduling TDMA transmissions in wireless multihop networks. Their main goal is to determine the optimal scheduling, in order to increase the capacity and reduce the delay for a given network topology, though they do not consider the traffic requirements of the active flows of the multihop network or fairness issues. In this paper, we propose a joint TDMA scheduling/load balancing algorithm, called Load-Balanced-Fair Flow Vector Scheduling Algorithm (LB-FFVSA). This algorithm schedules the transmissions in a fair manner, in terms of throughput per connection, taking into account the communication requirements of the active flows of the network. Simulation results show that the proposed algorithm achieves improved performance compared to other solutions, not only in terms of fairness, but also in terms of throughput. Moreover, it was proved that when a load balancing technique is used, the performance of the scheduling algorithm is further improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号