首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
基于改进粒子滤波算法的人体运动跟踪   总被引:1,自引:0,他引:1  
在复杂环境中对人体进行有效性和鲁棒性的跟踪是计算机视觉领域一个非常富有挑战性的课题,提出了一种基于改进粒子滤波算法实现的人体运动跟踪。利用改进的粒子滤波算法跟踪视频序列中的人体运动,不但解决了传统粒子滤波算法计算量大、误码多的缺点,而且能较好地处理遮挡和自遮挡问题。实验结果表明,该改进算法能更准确、更有效地跟踪运动人体。  相似文献   

2.
为了提高噪声和混响环境中说话人跟踪的精度,提出一种基于粒子滤波的混合声源跟踪算法。根据接收信号信噪比变化较大的特点,该算法使用相位变换加权的可控响应功率定位函数来计算每帧信号的粒子状态观测值,利用其方差将接收信号帧分为高信噪比和低信噪比两种。对于高信噪比帧,仍采用该定位函数构造的似然函数来评价粒子权重,对于低信噪比帧,则采用常规可控波束形成定位函数构造的似然函数来评价粒子权重。仿真结果表明,在平均信噪比较高的条件下,该算法的跟踪性能与传统算法接近;在平均信噪比低于10 dB,混响时间大于200 ms的条件下,跟踪误差比传统算法减少20%~30%。  相似文献   

3.
人物跟踪技术是目前智能监控系统的核心方法之一,针对人脸运动的非线性非高斯的特点,引入粒子滤波算法来进行运动预测估计,抵抗遮挡干扰。同时,根据人脸结构特点,提出了一种分块颜色直方图,用以描述人脸的特征。并且根据预测精度对预测过程中目标运动速度和过程噪声方差进行自适应更新。实验结果表明,在人脸的旋转,肤色和部分遮挡影响下跟踪精度较高,抵抗光照环境变化,以及人脸大小变化等的鲁棒性较强。  相似文献   

4.
基于自适应粒子滤波的跳水运动视频跟踪算法   总被引:1,自引:0,他引:1  
用传统粒子滤波算法对跳水运动视频跟踪存在两个突出问题:观测模型不能适应运动员身体的表观变化;运动模型不能准确预测运动员位置的快速改变。针对这两个问题,本文提出一种自适应粒子滤波算法。该算法在粒子滤波框架下引入一种自适应观测模型,并且根据跟踪误差与运动员动作改变幅度的大小,自适应选择噪声方差和粒子数量。实验结果表明,本文算法比传统粒子滤波算法具有更低的跟踪误差率,而且在运动员动作改变幅度变大时有更好的鲁棒性。  相似文献   

5.
基于粒子滤波和Mean-shift的跟踪算法   总被引:1,自引:2,他引:1       下载免费PDF全文
蒋旻  许勤  尚涛  高伟义 《计算机工程》2010,36(5):21-22,2
粒子滤波作为一种基于贝叶斯估计的算法,在处理非线性运动目标跟踪问题上具有特殊的优势。基于此,提出一种基于粒子滤波和Mean-shift的混合跟踪算法(KMSEPF)。KMSEPF算法对一般的Mean-shift和粒子滤波混合算法进行改进。结果证明,KMSEPF算法与混合算法MSEPF相比,在计算效率提高的同时,跟踪准确性和处理遮挡的能力没有下降。  相似文献   

6.
为了提高目标外观迅速变化时视觉跟踪算法的鲁棒性,提出了一种基于混合观测模型的粒子滤波跟踪算法。在粒子滤波构架下,使用加权核直方图模型结合mean shift算法对粒子进行初定位,通过正交子空间模型作为精确的观测模型,估计目标的最终状态。这样既能迅速地学习到目标外观变化的趋势,又避免了使用正交子空间而产生的跟踪漂移。实验结果表明,该算法在光照变化、姿态变化、遮挡的情况下,均具有较强的鲁棒性。  相似文献   

7.
本文针对单目标多径跟踪问题提出了一种基于粒子滤波的多径伯努利跟踪算法.该算法首先利用多径伯努利滤波算法解决了超视距雷达系统中的多径传播问题,然后结合粒子滤波实现方式解决了系统模型非线性问题.仿真实验表明该算法比传统的高斯混合多径伯努利滤波具有更高的跟踪精度.  相似文献   

8.
字典学习广泛应用于图像去噪、图像分类等领域,但是将离线字典训练如何应用于视频目标跟踪的研究较少。本文采用一种字典编码方法提取目标的局部区域描述符,通过训练分类器将跟踪问题转化为背景和前景二值分类问题,并通过粒子滤波对物体位置进行估计实现跟踪。不同图像序列的实验结果表明,与现有的方法相比本文的算法具有较好的鲁棒性。  相似文献   

9.
基于目标跟踪的粒子群粒子滤波算法研究   总被引:3,自引:0,他引:3  
针对粒子滤波方法在重采样阶段容易造成样本有效性和多样性的损失,导致了样本贫化问题,提出了一种改进的粒子滤波算法.算法将粒子群优化思想引入粒子滤波中,在粒子采样过程前先利用粒子群算法进行优化.粒子群算法将最新观测值融合到粒子进化公式中,大部分粒子经过粒子群优化后,朝着后验概率分布比较密集的区域运动,聚集在最优粒子附近,使粒子的权值被提高,避免了在重新采样过程中被舍弃,进而缓解了样本被贫化问题.目标跟踪系统中的位置估计由于物体运动具有突然性,很难准确估计.采用非线性目标跟踪模型和分时恒定值模型分别研究改进粒子滤波算法对误差均方值的影响.仿真结果表明改进算法与常规粒子滤波算法和扩展卡曼滤波算法相比,更加有效地降低变量的误差均方值,从而提高了滤波性能.  相似文献   

10.
针对混响环境中说话人方位跟踪问题,提出一种基于粒子滤波的声源方位跟踪算法。该算法根据说话人的运动特点,在Langevin方程的基础上构建声源方位的动态模型,采用相位变换加权的可控响应功率作为定位函数,运用粒子滤波对声源方位进行跟踪。使用典型会议室环境下小型麦克风阵列接收的真实数据来做实验。结果表明,该算法能有效地实现随机走动说话人的方位跟踪,并且在水平角和仰角方向的均方根误差均小于5°。  相似文献   

11.
一种改进的粒子滤波目标跟踪算法*   总被引:3,自引:4,他引:3  
传统的Condensation跟踪算法使用状态转移分布作为采样粒子的建议分布函数,没有考虑当前的观测值,大量的粒子运算浪费在了那些具有小似然性的区域。针对该问题,提出一种基于Mean Shift以改进建议分布函数的粒子滤波跟踪方法。实验表明,由于有效地利用了当前观测值,改进的算法具有较强的鲁棒性和实时性。  相似文献   

12.
为解决红外运动目标跟踪中的遮挡、形变等问题,提出一种基于粒子滤波的跟踪方法。该方法首先利用目标区域的灰度分布,建立了一种基于统计直方图的系统观测概率模型。并将飞机目标的运动看作惯性受限的非平稳过程,采用微分线性拟合模型作为系统状态转移模型。序列图像的实验表明:该算法能够在目标高速运动或发生遮挡的情况下稳健跟踪目标,其总体性能优于Mean Shift算法。  相似文献   

13.
基于粒子滤波的红外运动目标跟踪   总被引:1,自引:0,他引:1  
于勇  郭雷 《计算机应用》2008,28(6):1543-1545
提出一种基于粒子滤波及Mean Shift算法的红外运动目标跟踪方法。该方法首先利用目标区域的灰度分布,建立了一种基于统计直方图的系统观测概率模型,并针对红外目标机动性强,需要大量粒子才能保证算法鲁棒性的问题,将Mean Shift算法引入到粒子更新的过程中,使粒子分布在观测的局部区域内,在利用少量粒子实现分布多样性的同时,有效克服了粒子退化现象。序列图像的实验表明:该算法能够在目标高速运动或发生遮挡的情况下稳健跟踪目标,其总体性能优于传统的粒子滤波算法。  相似文献   

14.
基于"粒子"滤波器的复杂环境下头部跟踪算法   总被引:2,自引:2,他引:2  
在复杂背景下进行头部检测与跟踪是多功能感知的重要交互通道。在对传统头部检测算法进行改进的基础上,提出了一种基于“粒子”滤波器的实时头部跟踪算法。试验结果表明该算法实时性强,且具有良好的鲁棒性,能在头部发生转动、遮挡及多人干扰等复杂环境下进行稳定跟踪,可广泛应用于头部跟踪、图像分割和人脸检测等领域。  相似文献   

15.
基于边缘粒子滤波的目标跟踪算法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了提高目标跟踪过程中粒子滤波结果的精度,将边缘粒子滤波算法应用于目标跟踪。首先将目标运动状态向量划分为线性和非线性两个子向量,然后,采用卡尔曼滤波方法处理线性状态子向量,采用粒子滤波方法处理非线性状态子向量。使用边缘粒子滤波算法和标准粒子滤波算法对目标进行跟踪仿真。仿真结果表明:将边缘粒子滤波算法应用在目标跟踪过程中,能够取得更高的跟踪精度;时间复杂度增加仅6%;在粒子数相对较少的条件下,仍能够保持较好的滤波性能。  相似文献   

16.
重采样是解决粒子滤波退化问题的主要方法,重采样的基本思想是采取复制保留权值较高的粒子,删除权值较低的粒子,而这导致了粒子多样性的减弱,特别是在样本受限条件下,甚至导致滤波发散。针对上述问题,提出改进的粒子滤波算法,将Mean Shift与粒子滤波融合,在重采样部分引入小生境遗传算法,提高粒子的多样性,避免粒子退化。实验表明,改进后的算法状态估计精度更高,效果更好。  相似文献   

17.
基于灰色预测模型和粒子滤波的视觉目标跟踪算法   总被引:1,自引:0,他引:1  
结合灰色预测模型和粒子滤波,提出一种新的视觉目标跟踪算法.由于粒子滤波未考虑先验信息对建议分布产生的指导作用,不能很好地逼近后验概率分布,对此,采用历史状态估计序列作为先验信息,建立该序列的灰色预测模型来预测产生建议分布.与粒子滤波、卡尔曼粒子滤波和无迹粒子滤波进行对比实验,结果表明所提出的算法在视觉目标跟踪中具有更好的性能.  相似文献   

18.
跟踪遮挡目标的一种鲁棒算法   总被引:2,自引:0,他引:2  
为了解决在跟踪目标过程中的遮挡问题,引入Kalman滤波器为Mean Shift跟踪算法选择初始点,在跟踪稳定的情况下进行模型更新以消除由于目标缓慢变化而产生的累积误差对跟踪结果的影响。根据Kalman滤波器残差的大小判定是否发生遮挡,遮拦检测算法对目标进行分块检测从而把遮挡分为部分遮挡和完全遮挡两种情况,并对两种情况进行区别讨论:对部分遮挡情况不做特殊处理;对完全遮挡情况,结合目标的运动方向提出6点搜索策略来找回目标。实验表明,该算法能很好地解决跟踪运动目标过程中目标的遮挡问题。  相似文献   

19.
提出了一种基于粒子滤波视频跟踪算法的停车事件检测方法,实现了对高速公路交通视频的自动监控。首先用混合差分技术,快速提取出视频中的车辆对象;并用粒子滤波算法实现了运动车辆的跟踪;进而通过对车辆运动的数学建模,对停车事件进行了自动检测。最后,对多组高速公路交通视频进行测试,结果表明:提出的检测方法比其他常用方法响应速度更快,且具有较高的检测准确率和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号