首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(7):9119-9128
A porous carbon nanocomposite with embedded TiO2 nanowires (NWs) was synthesized using a two-step synthetic method in which carbon matrix was obtained by carbonizing a vacuum dried gel. This unique structure in which TiO2 nanowires uniformly distributed in and tightly bonded to the carbon matrix shortened the electron transport path and reduced the transmission resistance. Nanoporous structure ensured continuous transfer of Li+/Na+ and supplied a large specific surface area of 280.82 m2 g−1 to provide more active sites. Different from other existing works on TiO2@C anode materials with TiO2 loading higher than 60 wt%, the obtained very small amount of TiO2 (~12 wt%) improved the electrochemical and long-cycle performance of carbon substrate with TiO2 NWs embedded significantly, due to uniformly distributed TiO2 NWs throughout the carbon matrix. These TiO2@C composite anodes could deliver a specific capacity of 286 mA h g−1 at 0.3 C, 197 mA h g−1 at 0.15 C for lithium and sodium ion batteries, respectively. It maintained remarkably stable reversible capacities of 128 and 125 mA h g−1 for lithium and sodium ion batteries at 3 C during 2500 cycles, respectively. Smaller fluctuations and smoother curves demonstrated that sodium ion storage was more stable than lithium ion storage for the TiO2@C composite anode. In addition, the capacitive contributions of TiO2@C in both systems are quantified by kinetics analysis.  相似文献   

2.
《Ceramics International》2022,48(22):33200-33207
Among a variety of host materials for lithium storage, titanium-niobium oxides exhibit great potential in application. Herein, Ti2Nb10O29 nanowire is synthesized via an electrospinning method. Compared with bulk Ti2Nb10O29 prepared by solid-state approach, the electrochemical properties of Ti2Nb10O29 nanowire is better. According to the galvanostatic charging-discharging test, the initial capacity of 232.8 mAh g?1 for Ti2Nb10O29 nanowire is displayed. Besides, it exhibits superior rate performance. With the current density set as 0.5, 1, 2, 3, 4 and 5 C, the Ti2Nb10O29 nanowire can deliver the specific capacity of 251.3, 240.3, 221.8, 205.3, 188.1 and 174.5 mAh g?1, respectively. Furthermore, its cycling performance is superior. The capacity retention of Ti2Nb10O29 nanowire is 85.90% after 900 cycles at 12 C, which is obviously superior than that of bulk Ti2Nb10O29 (25.16%). Finally, a Ti2Nb10O29/LiCoO2 full cell is fabricated, which exhibits excellent electrochemical performance, demonstrating its potential for practical application.  相似文献   

3.
One of the main issues for titanium-based anode materials is their poor electronic conductivity and this issue can affect their rate performance. For conquering this drawback, many approaches have been proposed. In this report, SrLi2Ti6O14 as one of the titanium-based anode materials is prepared via a facile sol–gel method and subsequently it has been composited with silver to elevate its electronic conductivity. Upon the analysis of electrochemical results, the SrLi2Ti6O14/Ag composite with 6?wt% Ag can deliver an initial capacity of 164.9?mAh?g?1. After 50 cycles, the sample can still retain 154.6?mAh?g?1 with 93.8% retention of the first cycle. Meanwhile, the SrLi2Ti6O14/Ag composite with 6?wt% Ag can also exhibit good rate capacities, even at 300?mA?g?1, its capacity can be firmly kept at 140.0?mAh?g?1. In addition, in situ X-ray diffraction characterization shows the structural reversibility of the SrLi2Ti6O14/Ag composite with 6?wt% Ag during cycling. All the electrochemical results indicate that the SrLi2Ti6O14/Ag composite with 6?wt% Ag can be a promising anode material for lithium ion batteries.  相似文献   

4.
《Ceramics International》2016,42(10):12027-12032
CuO mesocrystal entangled with multi-wall carbon nanotube (MWCNT) composites are synthesized through a facile scalable precipitation and a followed oriented aggregation process. When evaluated as anode materials for lithium ion batteries, the CuO-MWCNT composites exhibit high areal capacity and good cycling stability (1.11 mA h cm−2 after 400 cycles at the current density of 0.39 mA cm−2). The excellent electrochemical performance can be ascribed to the synergy effect of the unique structure of defect-rich CuO mesocrystals and the flexible conductive MWCNTs. The assembled architecture of CuO mesocrystals can favor the Li-ion transport and accommodate the volume change effectively, as well as possess the structural and chemical stability of bulk materials, while the entangled MWCNTs can maintain the structural and electrical integrity of the electrode during the cycles.  相似文献   

5.
In this work, hierarchical structure Nd10W22O81 nanowires are successfully prepared by a feasible electro-spinning technique followed by heat treatment. The structure, morphology and electrochemical characteristics of Nd10W22O81 nanowires are investigated and compared with Nd10W22O81 particles fabricated by a high temperature solid state reaction. It can be observed that Nd10W22O81 nanowires display a “nanoparticle-in-nanowire” architecture. For comparison, solid state formed Nd10W22O81 is composed of irregular microsized particles. This hierarchical architecture makes Nd10W22O81 nanowires have higher Li-storage capacity and better rate performance, contributing to the larger ion channels and shorter ion transportation pathways. In addition, an in-situ X-ray diffraction investigation is also operated to study the structural evolution and reaction mechanism during the charge/discharge process. All these evidences indicate that hierarchical structure Nd10W22O81 nanowires could be a potential high capacity anode material for rechargeable lithium-ion batteries.  相似文献   

6.
《Ceramics International》2017,43(13):9945-9950
Co3O4, as a promising anode material for the next generation lithium ion batteries to replace graphite, displays high theoretical capacity (890 mAh g−1) and excellent electrochemical properties. However, the drawbacks of its poor cycle performance caused by large volume changes during charge-discharge process and low initial coulombic efficiency due to large irreversible reaction impede its practical application. Herein, we have developed a porous hollow Co3O4 microfiber with 500 nm diameter and 60 nm wall thickness synthesized via a facile chemical precipitation method with subsequent thermal decomposition. As an advanced anode for lithium ion batteries, the porous hollow Co3O4 microfibers deliver an obviously enhanced electrochemical property in terms of lithium storage capacity (1177.4 mA h g−1 at 100 mA g−1), initial coulombic efficiency (82.9%) and cycle performance (76.6% capacity retention at 200th cycle). This enhancement could be attributed to the well-designed microstructure of porous hollow Co3O4 microfibers, which could increase the contact surface area between electrolyte and active materials and accommodate the volume variations via additional void space during cycling.  相似文献   

7.
《Ceramics International》2020,46(13):20878-20884
Novel structured porous hollow six-branched star-like MnO was synthesized via a facile, surfactant-free hydrothermal decomposition, which was followed by high-temperature heat treatment. Compared with the nonporous hollow six-branched star-like MnO2, the porous hollow six-branched star-like MnO realized substantially higher electrochemical performance (844.8 mAh g−1 at 0.5 A g−1 after 200 cycles and 769.7, 741.7, 728.9, 713.2, and 704.4 mAh g−1 at 0.1, 0.3, 0.5, 1, and 1.5 A g−1, respectively, for porous star-like MnO, compared with 338.4 mAh g−1 and 476.7, 392.4, 357, 303.4, and 269.9, respectively, under the same testing conditions for nonporous star-like MnO2). The superior performance of the porous hollow six-branched star-like MnO is attributed to its enhanced electrode kinetics, which are due to an enlarged active contact area and shortened electron and Li+ conduction paths.  相似文献   

8.
《Ceramics International》2016,42(15):16872-16881
Lithium zinc titanate (Li2ZnTi3O8) anode materials have been successfully synthesized using rutile-TiO2 with different particle sizes as titanium sources via a molten-salt method. Various physical and electrochemical methods are applied to characterize the effects of TiO2 particle sizes on the structures and physicochemical properties of the Li2ZnTi3O8 materials. When the particle size of TiO2 is too small (10 nm), it is difficult to homogeneously mix TiO2 with the other raw materials. Thus, the final product Li2ZnTi3O8 has poor crystallinity, large particle size, small specific surface area, pore volume and average pore diameter, which are disadvantageous to its electrochemical performance. Using TiO2 with the proper particle size of 100 nm as the titanium source, the Li2ZnTi3O8 (R-100-LZTO) with excellent electrochemical performance can be obtained. At 1 A g−1, 175.8 and 163.6 mA h g−1 are delivered at the 1st and the 200th cycles, respectively. The largest capacities of 163, 133.3 and 122.5 mA h g−1 are delivered at 2.5, 5 and 6 A g−1, respectively. The good high-rate performance of the R-100-LZTO originates from the good crystallinity, small particle size, large specific surface area and average pore diameter, low charge-transfer resistance and high Li+ diffusion coefficient.  相似文献   

9.
We synthesize a carbon anode material with unique nanostructure for high power lithium ion batteries. The carbon material is composed of numerous clusters of carbon nanobeads, and shows a macro-meso-micro hierarchical porous structure. This unique nanostructure appears to facilitate the rapid transfer of lithium ions and a very large ion adsorption. It exhibits a reversible capacity of 407.4 mAh g−1 and its rate performance is drastically improved in comparison with that of the commercial graphite. The unique structure enables the anode to combine the advantages of both lithium ion batteries and electrochemical double layer capacitors, resulting in the good electrochemical performance.  相似文献   

10.
The porous Fe2TiO5 particles are successfully synthesized through a facile one step solution combustion method. The Fe2TiO5 negative materials exhibit remarkable electrochemical performance with discharge capacities of 371.4?mAh g?1 at the 100 th cycle, and display promising rate stability with discharge capacities 76.6?mAh·g?1 at a high current density of 3.2?A?g?1. In addition, the mechanism of electrochemistry reaction is illustrated by the CV, raman and EIS measurements, the irreversible capacity mainly causes from the irreversible lithium insertion at 1.8?V. The results indicate that the one step solution combustion synthesis of porous Fe2TiO5 is a promising strategy for developing low-cost and high-performance Ti-based negative materials.  相似文献   

11.
Carbon coating of silicon powder was studied as a means of preparation of silicon-based anode material for lithium ion batteries. Carbon-coated silicon has been investigated at various cycling modes vs. lithium metal. Ex situ X-ray data suggest that there is irreversible reduction of crystallinity of the silicon content. Since carbon layer preserving the integrity of the particle, the reversibility of the structural changes in the amorphous state Li-Si alloy provides the reversible capacity. The progressively decreased Coulomb efficiency with cycling indicates that more and more lithium ions are trapped in some form of Li-Si alloy and become unavailable for extraction. This is the main factor for the capacity fading during cycling. Qualitative studies of the impedance spectra of the electrode material at the first cycle for the fresh anode and at the last cycle after the anode capacity faded considerably and provide further support for this model of fading mechanism.  相似文献   

12.
《Ceramics International》2017,43(9):7231-7236
In this work, silver and carbon co-coated SrLi2Ti6O14 is synthesized by using a solid-state assisted solution method, with glucose as carbon source and silver nitrate as Ag source. The structural and morphological properties of as-prepared samples are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), which confirm that C/Ag composite layer is uniformly coated on the surface of SrLi2Ti6O14. Electrochemical measurements like galvanostatic charge/discharge tests, rate performance, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analysis are also undertaken to evaluate and compare the lithium storage capability of SrLi2Ti6O14 before and after coating. According to the results, SrLi2Ti6O14@C/Ag presents enhanced electrochemical capability compared with bare material. It can be found that bare SrLi2Ti6O14 only delivers the reversible capacity of 140.32 mA h g−1 with capacity retention of 90.7% at 100 mA g−1 after 200 cycles. In contrast, SrLi2Ti6O14@C/Ag presents the reversible capacity of 151.20 mA h g−1 with only 6.7% capacity loss after 200 cycles. The improvement is owing to the increase of electronic conductivity and the decrease in the redox polarization after coating. In order to further investigate the structural stability of SrLi2Ti6O14@C/Ag, in-situ XRD was performed as well. All the results prove that the C/Ag co-coating has positive effect on the electrochemical performance of SrLi2Ti6O14.  相似文献   

13.
《Ceramics International》2021,47(19):26732-26737
Herein, we propose a new anode material, PbNb2O6, for use in lithium-ion batteries. PbNb2O6 can be synthesized via a simple and traditional solid-state method. The as-prepared powder exhibits an average size distribution of about 0.5 μm. When tested in a lithium-ion cell, the PbNb2O6 electrode can exhibit a charge capacity of 245.2 mAh g−1 at 200 mA g−1, and after 80 cycles, the capacity can retain a charge capacity of 181.4 mAh g−1, showing 0.32% capacity fading per cycle. Furthermore, the capacity of the PbNb2O6 electrode is 223.1 mAh g−1, even when cycled at 1000 mA g−1, and a capacity of 150.7 mAh g−1 is maintained up to 500 cycles. In addition, the lithiation mechanism of PbNb2O6 is investigated via various techniques. Interestingly, PbNb2O6 exhibits high capacity without the contribution of two redox couples of niobium after the initial cycles. Finally, all Results suggest that PbNb2O6 has potential for use as an electrode in lithium-ion batteries.  相似文献   

14.
Novel composite of bi-component MnO/ZnO (denoted as MZO) hollow microspheres embedded in reduced graphene oxide (RGO) as a high performance electrode material for Lithium ion batteries (LIBs) is prepared via one-pot hydrothermal method and subsequent annealing. The structures and morphologies of as-prepared hybrid materials are characterized by X-ray diffraction, scanning electron microscopy, Raman spectra, FTIR and transmission electron microscopy. The results reveal that the MZO hollow microspheres with nanometer-sized building blocks are well dispersed in the RGO support. The electrochemical tests show that the hybrid material has a reversible capacity of 660 mAh/g at a current density of 100 mA/g with a coulombic efficiency of 98% after 100 cycles. Besides, a specific capacity of about 207 mAh/g is retained even at a current density as high as 1600 mA/g, exhibiting high reversibility and good capacity retention. Our results suggest that the composite of bi-component MZO hollow microspheres embedded in RGO will be promising electrode materials for low-cost, environmentally friendly and high-performance LIBs.  相似文献   

15.
《Ceramics International》2017,43(14):10905-10912
Herein, a MnFe2O4/graphene (MnFe2O4/G) nanocomposite has been synthesized via a facile N2H4·H2O-induced hydrothermal method. During the synthesis, N2H4·H2O is employed to not only reduce graphene oxide to graphene, but also prevent the oxidation of Mn2+ in alkaline aqueous solution, thus ensuring the formation of MnFe2O4/G. Moreover, MnFe2O4 nanoparticles (5–20 nm) are uniformly anchored on graphene. MnFe2O4/G electrode delivers a large reversible capacity of 768 mA h g−1 at 1 A g−1 after 200 cycles and high rate capability of 517 mA h g−1 at 5 A g−1. MnFe2O4/G holds great promise as anode material in practical applications due to the outstanding electrochemical performance combined with the facile synthesis strategy.  相似文献   

16.
The SiMn-graphite composite powder was prepared by mechanical ball milling and its electrochemical performances were evaluated as the candidate anode materials for lithium ion batteries. It is found that the cyclic performance of the composite materials is improved significantly compared to SiMn alloy and pure silicon. The heat treatment of the electrodes is beneficial for enhancing the cyclic stabilities. The SiMn-20 wt.% graphite composite electrode after annealing at 200 °C has an initial reversible capacity of 463 mAh g−1 and a charge-discharge efficiency of 70%. Moreover, the reversible capacity maintains 426 mAh g−1 after 30 cycles with a coulomb efficiency of over 97%. The phase structure and morphology of the composite were analyzed by X-ray diffraction (XRD) and scanning electron microscopy. The lithiation/delithiation behavior was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry. The composite materials appear to be promising candidates as negative electrodes for lithium rechargeable batteries.  相似文献   

17.
Hierarchical Co3O4 nanostructure is synthesized via a self-assembled process in molten hydroxides. The morphologies, crystal structures and the phase transformation processes are analyzed by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. As an anode material for lithium ion batteries, the hierarchical Co3O4 exhibit an initial capacity of 1336 mAh g−1 and a stable capacity of 680 mAh g−1 over 50 cycles. More importantly, high rate capability is obtained at different current densities between 140 and 1120 mA g−1. The improved electrochemical performance of Co3O4 could be attributed to the unique hierarchical nanostructure.  相似文献   

18.
SnS nanoparticles were mechnochemical synthesized and then co-heated with polyvinyl alcohol (PVA) at various temperatures to obtain carbon coating. All amorphous carbon-coated SnS particles had average particle size of about 20-30 nm, revealed by transmission electron microscopy (TEM). During discharge-charge, ex situ XRD results indicated that SnS firstly decomposed to Sn, then lithium ions intercalated into Sn. The reaction of Li+ and Sn was responsible for the reversible capacity in cycling process. The lithium ion insertion and extraction mechanism of SnS anode was similar to that of Sn-based oxide. Electrochemical capacity retention of carbon-coated SnS obtained at 700 °C was superior to that of other prepared SnS anodes and especially the rate capability was obviously enhanced due to good electric conductivity and buffering matrix effects of carbon coating.  相似文献   

19.
《Ceramics International》2022,48(10):14098-14106
Transitional metal selenides are considered as potential anode candidates for sodium-ion batteries (SIBs) because of their relatively high theoretical capacity and environmental benign. However, the large volume change derived from the conversion reaction and the sluggish kinetics due to the inherent low electrochemical conductivity hinder their practical application. Herein, composite materials of NiSe2 encapsulated in nitrogen-doped TiN/carbon nanoparticles with carbon nanotubes (CNTs) on the surface (NiSe2@N-TCP/CNTs) are fabricated via pyrolysis and selenization processes. In this composite, TiN inside the carbon matrix can enhance the conductivity and structural stability. CNTs that are in-situ grown on the surface not only further enhance the conductivity of the composites, but also offer sufficient space to buffer the volume expansion and alleviate serious aggregation of NiSe2 nanoparticles. Benefit from these merits, the NiSe2@N-TCP/CNTs showed a lower charge transfer resistance and a faster Na+ diffusion rate than materials without growing CNTs. When used as the anode of SIBs, the NiSe2@N-TCP/CNTs electrode delivered a reversible capacity of 344.0 mAh g?1 after 1000 cycles at 0.2 A g?1, and still maintained at 272.7 mAh g?1 even at a high current density of 2 A g?1. The remarkable electrochemical performance is mainly attributed to the special designed hierarchical structures and pseudocapacitance sodium storage behavior.  相似文献   

20.
为了寻求优异电化学性能的新型金属有机聚合物基负极材料,以偏苯三甲酸作为有机配体和六水硝酸钴进行配位,通过水热法合成了一种新型的钴基金属有机聚合物(Co-MOP)。在空气气氛下,对Co-MOP分别以500 ℃、600 ℃、700 ℃高温煅烧获得相应的Co-MOP-500、Co-MOP-600、Co-MOP-700衍生材料。Co-MOP衍生材料用作锂离子电池负极材料进行了研究。电化学测试结果显示Co-MOP-600展现出了优异的电化学性能。在100 mA/g的电流密度下,Co-MOP-600电极的首圈放电比容量达到1818.5 mAh/g,循环100圈后比容量还能维持1308.5 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号