首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
概述了GaN异质外延生长中衬底的选择以及缺陷的形成机理,从缓冲层技术、横向外延技术、柔性衬底技术等生长工艺方面综述了国内外GaN基半导体薄膜生长的最新研究和进展,并对其优缺点进行了分析比较,认为发展同质外延将有希望解决现在异质外延生长中存在的问题,最后展望了GaN基薄膜同质外延生长的前景.  相似文献   

2.
将以极化为特征、具有丰富功能特性的介电氧化物材料通过外延薄膜的方式,在半导体GaN上制备介电氧化物/GaN集成薄膜,其多功能一体化与界面耦合效应可推动电子系统单片集成化的进一步发展。然而,由于2类材料物理、化学性质的巨大差异,在GaN上生长介电薄膜会出现严重的相容性生长问题。采用激光分子束外延技术(LMBE),通过弹性应变的TiO2的缓冲层来减小晶格失配度,降低介电薄膜生长温度,控制界面应变释放而产生的失配位错,提高了介电薄膜外延质量;通过低温外延生长MgO阻挡层,形成稳定的氧化物/GaN界面,阻挡后续高温生长产生的扩散反应;最终采用TiO2/MgO组合缓冲层控制介电/GaN集成薄膜生长取向、界面扩散,降低集成薄膜的界面态密度,保护GaN半导体材料的性能。所建立的界面可控的相容性生长方法,为相关集成器件的研发提供了一条可行的新途径。  相似文献   

3.
首先分析了当前我国电子信息产业的现状,特别是电子材料与元器件行业的状况,结合国际上电子信息技术的发展趋势,阐述了研究集成电子材料的重要意义.文章结合作者的工作主要介绍了介电/GaN集成电子薄膜生长控制与性能研究情况,采用TiO2(诱导层)/MgO(阻挡层)组合缓冲层的方法控制介电/GaN集成薄膜生长取向、界面扩散,保护GaN基半导体材料的性能,降低介电/GaN集成薄膜界面态密度,建立界面可控的相容性生长方法.通过集成结构的设计与加工,研制出介电增强型GaN HEMT器件、高耐压GaN功率器件原型以及一体化集成的微波电容、变容管、压控振荡器、混频器等新型元器件.  相似文献   

4.
采用MOCVD系统,在图形化的绝缘体上硅(SOI:silicon-on-insulator)衬底上侧向外延生长了GaN薄膜。利用SEM、TEM和Raman光谱对生长的GaN薄膜的质量进行了分析研究。研究发现,在GaN的侧向外延生长区域,侧向生长的GaN能够完全合并,GaN薄膜内的残余应力减小,穿透位错密度大幅度降低。  相似文献   

5.
陶志阔  张荣  陈琳  修向前  谢自力  郑有炓 《功能材料》2012,43(19):2647-2650
应用金属有机物化学气相沉积(MOCVD)方法,在c轴取向的GaN上生长出Fe颗粒薄膜以及Fe3N薄膜。应用XRD、AFM、XPS以及SQUID等技术对薄膜的结构、表面形貌以及磁学性能等性质进行了分析,结果表明六方结构的GaN上生长的Fe为立方结构,且以Fe(110)//GaN(0002)晶面以及Fe[001]//GaN[11■0]轴的方式存在,而生长的Fe3N为六方结构,且以Fe3N(0002)//GaN(0002)晶面以及Fe3N[11■0]//GaN[1ī00]轴的方式存在。同时,磁学分析表明,平行于薄膜方向为易磁化方向,垂直于薄膜方向为难磁化方向。  相似文献   

6.
自行设计了一套具有创新性的研究型立式高真空MOCVD装置,能够较好的调节反应气体的流动状态,从而在衬底上生长大面积均匀的外延层.利用该装置在蓝宝石和硅单晶衬底上成功地生长出高质量的GaN晶体薄膜.在蓝宝石衬底上生长出n、p型GaN以及多量子阱多层结构材料,并成功制备了GaN基多层量子阱结构的蓝光发光二极管,性能良好,具有实用价值.  相似文献   

7.
ZnO薄膜的制备和结构性能分析   总被引:3,自引:0,他引:3  
ZnO作为一种宽带隙半导体材料,近几年来已经成为国际上紫外半导体光电子材料和器件领域的研究热点.激光分子束外延(L-MBE)系统是获得器件级ZnO外延薄膜的先进技术之一.高质量精密ZnO陶瓷靶材对于该工艺的实施是十分关键的,本文中采用高纯原料,在洁净条件下制备了大面积、薄片型、尺寸可控的符合理想化学配比的高纯ZnO陶瓷靶材.采用所制备的靶材,利用L-MBE技术在(0001)蓝宝石基片上进行了ZnO薄膜的外延生长,在280 ℃~300 ℃低温条件下所生长的薄膜样品具有(0001)取向的纤锌矿晶体结构,薄膜光学性能良好,论文中对ZnO薄膜的低温L-MBE生长机理进行了探讨.  相似文献   

8.
以氮化镓(GaN)为代表的Ⅲ族氮化物半导体材料已经成为世界范围的研究热点。但是,采用异质外延法生长的GaN,由于衬底材料晶格失配和热失配而存在高密度的位措缺陷和产生龟裂;外延生长所用的源材料之间存在严重的气相预反应以及M0源对氧和水份等杂质十分敏感,因而外延质量和成县率强烈依赖于设备性能和工艺条件。无论是设备还是工艺,都还存在很大的发展空间和机遇,预料3年~5年内国外将推出每批几十片的商用机型,我国相关设备制造和器件开发面临严峻挑战。  相似文献   

9.
GaN纳米棒的制备及机理研究   总被引:4,自引:2,他引:2  
本文分别用三甲基镓和高纯蓝氨作为Ga源和N源,Ni(NO3)2作为催化剂,在Si(111)衬底上制得针尖状GaN纳米棒.测试结果表明制备的GaN纳米棒是沿<100>方向生长的纯六方相结构.通过对生长过程的分析,我们认为GaN纳米棒的生长过程不仅受到VLS机制的控制,而是多种生长方式共同作用的结果.在反应的初期,GaN纳米棒的生长遵从VLS机制;但是随着GaN纳米棒轴向和径向的生长,GaN纳米结构中纳米棒端部的Ni催化剂纳米球会被"挤"出顶部,在较大的气流流速下被吹落至衬底上,失去催化剂诱导作用的纳米棒随后自行外延生长;而吹落至衬底上的Ni催化剂纳米球成为第二次生长有利的形核位置,且再次生长出粗短的纳米棒.因此不同生长机制得到的GaN纳米棒交织在一起,形成了最终的GaN纳米结构.  相似文献   

10.
对采用射频等离子体分子束外延(RF-plasma MBE)生长得到的GaN进行极性研究。由于镓极性(Ga-polar)比氮极性(N-polar)有更好的化学稳定性,通过比较RF-plasma MBE生长得到的不同GaN样品对光辅助湿法刻蚀的稳定性,发现缓冲层生长条件对GaN外延层的极性有着重要影响:较高缓冲层生长温度得到的GaN外延层表现为N-polar,较低缓冲层生长温度得到的GaN外延层表现为Ga-polar。  相似文献   

11.
采用脉冲激光沉积技术在(0001)取向的GaN基片上以TiO2为缓冲层外延生长了PZT(111)单晶薄膜。X射线衍射分析表明PZT(111)衍射峰的摇摆曲线半高宽为0.4°,说明薄膜结晶性能良好。PZT薄膜疲劳特性测试结果表明,在经过107次翻转后PZT薄膜的剩余极化强度开始出现下降。P-E电滞回线和I-V测试表明PZT薄膜矫顽场(2Ec)为350 kV/cm,剩余极化(2Pr)约为96μC/cm2,在1 V电压下薄膜的漏电流密度为1.5×10-7A/cm2。以上性能测试结果表明,在半导体GaN上外延生长的PZT铁电薄膜性能基本满足铁电随机存储器的需要。  相似文献   

12.
采用LiNbO3单晶靶材,以激光脉冲沉积方法在六方GaN(0001)基片上沉积制备c轴取向的LiNbO3薄膜。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和原子力显微镜(AFM)研究了沉积温度和氧气压强对生长的薄膜的相组成、外延关系、表面形貌、晶粒大小的影响。结果显示,沉积温度500℃、氧分压20~30 Pa是在GaN基片上生长c轴取向LiNbO3薄膜的最优生长条件。XRD分析表明,生长的LiNbO3薄膜具有两种晶畴结构,其外延关系分别为[1-100](0001)LiNbO3//[11-20](0001)GaN和[10-10](0001)LiNbO3//[-12-10](0001)GaN。SEM和AFM对薄膜的表面形貌表征表明,在最优生长条件下沉积的薄膜表面平整,致密度好。  相似文献   

13.
利用金属有机物化学气相沉积技术在具有斜切角度的蓝宝石衬底(0~0.3°)上生长了非故意掺杂GaN薄膜,并采用显微镜、X射线双晶衍射、光荧光及霍尔技术对外延薄膜的表面形貌、晶体质量、光学及电学特性进行了分析.结果表明,采用具有斜切角度的衬底,可以有效改善GaN外延薄膜的表面形貌、降低位错密度、提高GaN的晶体质量及其光电特性,并且存在一个衬底最优斜切角度0.2°,此时外延生长出的GaN薄膜的表面形貌和晶体质量最好.  相似文献   

14.
采用脉冲激光沉积设备(PLD)在GaN(0001)晶向上成功沉积了铁电多晶膜LiNbO_3,然后采用热蒸发法在薄膜表面镀铝电极。并对制备的LiNbO_3薄膜进行XRD表征以及对金属-铁电体-半导体(MFS)结构进行了C-V表征,XRD结果表明,沉积温度对薄膜的晶化有很大的影响;C-V测量结果表明,MFS的GaN激活层在5V下就能得到反转,这是一般半导体基集成电路的要求电压。GaN基的MFS结构在GaN基场效应晶体管的实际应用中是非常有前景的。  相似文献   

15.
构建了SrTiO_3(STO)薄膜在GaN基底(0001)表面沿不同方向偏转10°、20°、30°、40°和50°具有不同界面结构的生长模型,采用基于密度泛函理论的平面波超软赝势法对GaN(0001)表面外延生长不同方向的STO进行了总能量模拟计算。结果表明,在晶格失配小的理想外延方向即[1-10]SrTiO_3//[10-10]GaN的能量最高,结构不稳定;而随着STO[1-10]沿GaN[10-10]方向角度的偏转,能量迅速降低,偏转角度为30°时能量最低,即外延关系为[1-10]SrTiO_3//[11-20]GaN时最稳定,与实验结果一致.能量计算结果表明,STO/GaN磁电薄膜有利于形成STO-Ti-GaN的界面结构。  相似文献   

16.
相比于第一代和第二代半导体材料,第三代半导体材料具有更高的击穿场强、电子饱和速率、热导率以及更宽的带隙,更适用于制备高频、大功率、抗辐射、耐腐蚀的电子器件、光电子器件和发光器件。氮化镓(GaN)作为第三代半导体材料的代表之一,是制作蓝绿激光、射频微波器件和电力电子器件的理想衬底材料,在激光显示、5G通信、相控阵雷达、航空航天等领域具有广阔的应用前景。氢化物气相外延(Hydride vapor phase epitaxy, HVPE)方法因生长设备简单、生长条件温和和生长速度快而成为制备GaN晶体的主流方法。由于普遍使用石英反应器,HVPE法生长获得的非故意掺杂GaN不可避免地存在施主型杂质Si和O,使其表现出n型半导体特性,但载流子浓度高和电导率低限制了其在高频大功率器件中的应用。掺杂是改善半导体材料电学性能最普遍的方法,通过掺杂不同掺杂剂可以获得不同类型的GaN单晶衬底,提高其电化学特性,从而满足市场应用的不同需求。本文介绍了GaN半导体晶体材料的基本结构和性质,综述了近年来采用HVPE法生长高质量GaN晶体的主要研究进展;对GaN的掺杂特性、掺杂剂类型、生长工艺以及掺杂原子对电学性...  相似文献   

17.
介电/半导体功能集成薄膜,主要是指将具有电、磁、声、光、热等功能特性的介电功能材料(主要是氧化物类介电功能材料)与硅、砷化镓或氮化镓等典型半导体类功能材料,以单层薄膜或多层薄膜的形式生长(甚至外延生长)在一起而形成的人工新材料,这类新材料有可能具有多功能一体化和功能特性之间的相互调制及耦合等特点,可望在新型电子和光电子器件中获得应用.介绍了介电/半导体功能集成薄膜产生的背景;从集成铁电薄膜与器件、HK/半导体集成薄膜与器件以及极性氧化物/GaN功能集成薄膜与器件等3个方面,分别介绍了介电/半导体功能集成薄膜的应用;概括介绍了介电/半导体功能集成薄膜的制备方法及特性调控.  相似文献   

18.
采用脉冲激光沉积法在(0001)取向的GaN以及AlGaN/GaN调制掺杂结构上制备了(111)取向的BiFeO3(BFO)薄膜。首先在导电氧化物SrRuO3和TiO2缓冲层包覆的GaN上制备了BFO薄膜,分析了在GaN上生长的BFO薄膜的面外取向、外延关系、表面形貌以及电学性能等性质。然后,在AlGaN/GaN调制掺杂结构上采用TiO2缓冲层生长了BFO薄膜,并采用光刻工艺分别在AlGaN表面制备Ti/Al/Ti/Au欧姆电极和BFO表面制备Ni/Au肖特基电极以形成二极管结构。C-V测试表明,由于BFO铁电薄膜极化的作用,BFO/TiO2/AlGaN/GaN结构具有1 V左右的逆时针窗口。  相似文献   

19.
二十一世纪以来,以氮化镓(GaN)和氧化锌(ZnO)为代表的第三代宽禁带(Eg>2.3 eV)半导体材料正成为半导体产业发展的核心支撑材料。由于GaN与ZnO单晶生长难度较大,成本较高,常采用外延技术在衬底材料上生长薄膜,因此寻找理想的衬底材料成为发展的关键。相比于传统的蓝宝石、6H-SiC、GaAs等衬底材料,铝镁酸钪(ScAlMgO4)晶体作为一种新型自剥离衬底材料,因其与GaN、ZnO具有较小的晶格失配(失配率分别为~1.4%和~0.09%)以及合适的热膨胀系数而备受关注。本文从ScAlMgO4晶体的结构出发,详细介绍了其独特的三角双锥配位体结构与自然超晶格结构,这是其热学性质与电学性质的结构基础。此外,ScAlMgO4晶体沿着c轴的层状结构使其具有自剥离特性,大大降低了生产成本,在制备自支撑GaN薄膜方面具有良好的市场应用前景。然而ScAlMgO4原料合成难度较大,晶体生长方法单一,主要为提拉法,且与日本存在较大的差距,亟需开发新的高质量、大尺寸ScAlMgO  相似文献   

20.
本文报道了在GaN/蓝宝石作衬底生长Ge薄膜材料的外延生长及其特性研究。研究了不同外延生长条件。结果表明,使用低压化学气相外延技术在GaN/蓝宝石衬底复合衬底上可以生长Ge薄膜。高分辨X射线衍射谱研究得到了峰位分别位于2θ=27.3°、2θ=45.3°和2θ=52.9°的Ge峰.原子力显微镜研究表明得到的Ge薄膜的表面粗糙度为43.4nm。扫描电子显微镜研究表明生长的Ge/GaN/蓝宝石具有清晰的层界,表面Ge晶粒致密并且分布均匀。Raman谱表明所生长的Ge的TO声子峰位于299.6cm-1,这表明了生长的Ge薄膜具有良好的质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号