首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a novel approach to develop and process a microelectrode integrated in a standard AFM tip. The presented fabrication process allows the integration of an electroactive area at an exactly defined distance above of the end of a scanning probe tip and the subsequent remodeling and sharpening of the original AFM tip using a focused ion beam (FIB) technique (See ref 1 for patent information). Thus, the functionality of scanning electrochemical microscopy (SECM) can be integrated into any standard atomic force microscope (AFM). With the demonstrated approach, a precisely defined and constant distance between the microelectrode and the sample surface can be obtained, alternatively to the indirect determination of this distance usually applied in SECM experiments. Hence, a complete separation of the topographical information and the electrochemical signal is possible. The presented technique is a significant step toward electrochemical imaging with submicrometer electrodes as demonstrated by the development of the first integrated frame submicroelectrode.  相似文献   

2.
Lee Y  Ding Z  Bard AJ 《Analytical chemistry》2002,74(15):3634-3643
A technique that combines scanning electrochemical microscopy (SECM) and scanning optical microscopy (OM) was developed. Simultaneous scanning electrochemical/optical microscopy (SECM/OM) was performed by a special probe tip, which consists of an optical fiber core for light passage, surrounded by a gold ring electrode, and an outermost electrophoretic insulating sheath, with the tip attached to a tuning fork. To regulate the tip-substrate distance, either the shear force or the SECM tip current was employed as the feedback signal. The application of a quartz crystal tuning fork (32.768 kHz) for sensing shear force allowed simultaneous topographic, along with SECM and optical imaging in a constant-force mode. The capability of this technique was confirmed by obtaining simultaneously, for the first time, topographic, electrochemical, and optical images of an interdigitated array electrode. Current feedback from SECM also provided simultaneous electrochemical and optical images of relatively soft samples, such as a polycarbonate membrane filter and living diatoms in a constant-current mode. This mode should be useful in mapping the biochemical activity of a living cell.  相似文献   

3.
Scanning electrochemical microscopy (SECM) is described using a band microelectrode tip. Numerical calculations allow the determination of approach curves of an insulating or a conductive substrate, and the numerical analysis is compared to experimental curves. Natural convection provides a steady-state current at the band microelectrode at an infinite distance from the substrate, and the band tip may be used in the SECM configuration as easily as the tip of a disk. Owing to the millimetric dimension of the band microelectrode, the substrate has an influence on the current at much longer distances than with the disk. Finally, the advantage of SECM with a band microelectrode is observed with the fast electrochemical modification of a fluoropolymer surface.  相似文献   

4.
A batch fabrication process at the wafer-level integrating ring microelectrodes into atomic force microscopy (AFM) tips is presented. The fabrication process results in bifunctional scanning probes combining atomic force microscopy with scanning electrochemical microscopy (AFM-SECM) with a ring microelectrode integrated at a defined distance above the apex of the AFM tip. Silicon carbide is used as AFM tip material, resulting in reduced mechanical tip wear for extended usage. The presented approach for the probe fabrication is based on batch processing using standard microfabrication techniques, which provides bifunctional scanning probes at a wafer scale and at low cost. Additional benefits of batch fabrication include the high processing reproducibility, uniformity, and tuning of the physical properties of the cantilever for optimized AFM dynamic mode operation. The performance of batch-fabricated bifunctional probes was demonstrated by simultaneous imaging micropatterned platinum structures at a silicon dioxide substrate in intermittent (dynamic) and contact mode, respectively, and feedback mode SECM. In both, intermittent and contact mode, the bifunctional probes provided reliable correlated electrochemical and topographical data. In addition, simulations of the diffusion-limited steady-state currents at the integrated electrode using finite element methods were performed for characterizing the developed probes.  相似文献   

5.
Combined scanning electrochemical atomic force microscopy (SECM-AFM) is a recently introduced scanned probe microscopy technique where the probe, which consists of a tip electrode and integrated cantilever, is capable of functioning as both a force sensor, for topographical imaging, and an ultramicroelectrode for electrochemical imaging. To extend the capabilities of the technique, two strategies for noncontact amperometric imaging-in conjunction with contact mode topographical imaging-have been developed for the investigation of solid-liquid interfaces. First, SECM-AFM can be used to image an area of the surface of interest, in contact mode, to deduce the topography. The feedback loop of the AFM is then disengaged and the stepper motor employed to retract the tip a specified distance from the sample, to record a current image over the same area, but with the tip held in a fixed x-y plane above the surface. Second, Lift Mode can be employed, where a line scan of topographical AFM data is first acquired in contact mode, and the line is then rescanned to record SECM current data, with the tip maintained at a constant distance from the target interface, effectively following the contours of the surface. Both approaches are exemplified with SECM feedback and substrate generation-tip collection measurements, with a 10-microm-diameter Pt disk UME serving as a model substrate. The approaches described allow electrochemical images, acquired with the tip above the surface, to be closely correlated with the underlying topography, recorded with the tip in intimate contact with the surface.  相似文献   

6.
Constant-distance mode scanning potentiometry was established by integrating potentiometric microsensors as ion-selective scanning probes into a SECM setup that was equipped with a piezoelectric shear force-based tip-to-sample distance control. The combination of specially designed micrometer-sized potentiometric tips with an advanced system for tip positioning allowed simultaneous acquisition of both topographic and potentiometric information at solid/liquid interfaces with high spatial resolution. The performance of the approach was evaluated by applying Ca(2+)-selective constant-distance mode potentiometry to monitor the dissolution of calcium carbonate occurring either at the (104) surface of calcite crystals or in proximity to the more complex surface of cross sections of a calcium carbonate shell of Mya arenaria exposed to slightly acidic aqueous solutions. Micrometer-scale heterogeneities in the apparent calcium activity profiles have successfully been resolved for both samples.  相似文献   

7.
An approximate theory for the feedback mode of the scanning electrochemical microscope (SECM) is developed to interpret the effects of substrate shielding on an ultramicroelectrode tip during a recording of iT versus d curves (approach curves) for reversible and quasireversible kinetics at a substrate surface. The resulting expressions for the tip current, iT, show a good fit to more accurate SECM simulations as well as to the experimental response of a reversible and quasireversible reaction. SECM shielding experiments thus give an interesting new insight into SECM approach curves over electrodes at different potentials, which suggest possible applications to measuring heterogeneous kinetics for fast reactions and diffusion coefficient determination.  相似文献   

8.
The theory of the feedback mode of scanning electrochemical microscopy is extended for probing heterogeneous electron transfer at an unbiased conductor. A steady-state SECM diffusion problem with a pair of disk ultramicroelectrodes as a tip and a substrate is solved numerically. The potential of the unbiased substrate is such that the net current flow across the substrate/solution interface is zero. For a reversible substrate reaction, the potential and the corresponding tip current depend on SECM geometries with respective to the tip radius including not only the tip-substrate distance and the substrate radius but also the thickness of the insulating sheath surrounding the tip. A larger feedback current is obtained using a probe with a thinner insulating sheath, enabling identification of a smaller unbiased substrate with a radius that is approximately as small as the tip radius. An intrinsically slow reaction at an unbiased substrate as driven by a SECM probe can be quasi-reversible. The standard rate constant of the substrate reaction can be determined from the feedback tip current when the SECM geometries are known. The numerical simulations are extended to an SECM line scan above an unbiased substrate to demonstrate a "dip" in the steady-state tip current above the substrate center. The theoretical predictions are confirmed experimentally for reversible and quasi-reversible reactions at an unbiased disk substrate using disk probes with different tip radii and outer radii.  相似文献   

9.
Guo J  Amemiya S 《Analytical chemistry》2005,77(7):2147-2156
In interphase eukaryotic cells, molecular transport between the cytoplasm and the nucleus is mediated by the nuclear pore complex (NPC), which perforates the double-membraned nuclear envelope (NE). Local permeability of the NE at large intact nuclei (approximately 400 microm in diameter) isolated from Xenopus laevis oocytes was studied by scanning electrochemical microscopy (SECM). Steady-state tip current versus tip-nucleus distance curves (approach curves) were measured with 10- and 2-microm-diameter Pt disk microelectrodes at the nuclei in isotonic buffer solutions containing redox-active molecules. The approach curves in the normalized form are independent of the tip diameter, indicating diffusion-limited membrane transport of the redox molecules. SECM chronoamperometry demonstrated that a decrease in the steady-state tip current at short tip-nucleus distances is due to smaller diffusion coefficients and concentrations of the redox molecules in the nucleus than those in the buffer solution. The experimental approach curves fit very well with theoretical ones for freely permeable membranes, yielding the NE permeability to the molecules that is at least 2 orders of magnitude larger than permeability of bilayer lipid membranes and cell membranes. This result indicates that passive transport of the redox molecules across the NE is facilitated by open NPC pores. The flux of the redox molecules sustainable by a single NPC channel (>9.8 x 10(6) molecules per NPC per second) and the diameter of the channel pore (>15 nm) were estimated from the SECM data by assuming the NE as an array of nanometer-sized NPC pores. The effects of the redox molecules on the nucleus and the NPC function were examined by studying signal-mediated nuclear import of rhodamine-labeled bovine serum albumin with and without nuclear localization signals by fluorescence microscopy.  相似文献   

10.
The integration of a scanning Kelvin probe (SKP) and a scanning electrochemical microscope (SECM) into a single SKP-SECM setup, the concept of the proposed system, its technical realization, and first applications are presented and discussed in detail. A preloaded piezo actuator placed in a grounded stainless steel case was used as the driving mechanism for oscillation of a Pt disk electrode as conventionally used in SECM when the system was operated in the SKP mode. Thus, the same tip is recording the contact potential difference (CPD) during SKP scanning and is used as a working electrode for SECM imaging in the redox-competition mode (RC-SECM). The detection of the local CPD is established by amplification of the displacement current at an ultralow noise operational amplifier and its compensation by application of a variable backing potential (V(b)) in the external circuit. The control of the tip-to-sample distance is performed by applying an additional alternating voltage with a much lower frequency than the oscillation frequency of the Kelvin probe. The main advantage of the SKP-SECM system is that it allows constant distance measurements of the CPD in air under ambient conditions and in the redox-competition mode of the SECM in the electrolyte of choice over the same sample area without replacement of the sample or exchange of the working electrode. The performance of the system was evaluated using a test sample made by sputtering thin Pt and W films on an oxidized silicon wafer. The obtained values of the CPD correlate well with known data, and the electrochemical activity for oxygen reduction is as expected higher over Pt than W.  相似文献   

11.
The fabrication and characterization of novel micropipet probes for use in scanning electrochemical microscopy (SECM) are described. These can be used to dispense small (pL) amounts of a solution while monitoring the electrochemical response at a substrate and at a ring electrode tip on the micropipet probe. The probes were constructed by insulating gold-coated borosilicate micropipets with electrophoretic paint and exposing a ring electrode at the tip by heat treatment. Characterization of the probes was performed using scanning electron microscopy, cyclic voltammetry, and SECM approach curve experiments. Routine construction of tips with diameters of the order of 3 microm was possible using this technique. The probes exhibited stable steady-state currents and positive and negative feedback approach curves that agreed with those predicted by theory. Demonstrative SECM imaging experiments were performed using a picodispenser to continuously dispense an electroactive solution (ferrocenemethanol) to the SECM cell while the probe was located within a few micrometers of a Pt substrate surface. Oxidation of the dispensed electroactive solution was performed at the substrate, and feedback currents were measured at the probe tip by holding the gold ring at a reducing potential. This mode of tip-dispensing SECM was used to obtain images of a platinum substrate electrode while monitoring both the substrate current and the feedback current at the probe.  相似文献   

12.
A new generation of platinum nanoelectrodes for constant-distance mode scanning electrochemical microscopy (CD-SECM) has been prepared, characterized, and used for high spatial resolution electrochemical measurements and visualization of electrochemically induced concentration gradients in microcavities. The probes have long (1-2 cm), narrow quartz tips that were conically polished and have a Pt nanoelectrode that is slightly offset from center. Because of the size and location of the electrode on the probe, it does not exhibit SECM feedback while approaching the analyzed sample surfaces even to distances within a few hundred nanometers. The probe was positioned near the surface while scanning and performing electrochemical measurements through use of nonoptical shear force control of the tip-to-sample distance. Test structures consisted of cylindrically shaped microcavities that are 50 microm in diameter with three individually addressable electrodes: a gold disk at 8-microm depth, a crescent-shaped gold ring at 4-microm depth along the wall, and a top gold electrode at the rim. Different electrodes within the microcavity were used to reduce and oxidize redox species in 250 microL of a solution of 5 mM hexaamineruthenium(III) chloride and 0.1 M potassium chloride, protected from evaporation by mineral oil, while the SECM tip followed the topography of the structures and monitored the current from the oxidation of [Ru(NH3)6]2+. Electrochemically generated concentration profiles were obtained from these complex test structures that are not possible with any other SECM technology at this time.  相似文献   

13.
Alternating current impedance imaging of a 6-microm thick membrane containing conical-shaped pores (60-nm and 2.5-microm diameter openings) using scanning electrochemical microscopy (SECM) is described. Impedance images of the pore openings were obtained by rastering a glass-sealed conically shaped Pt tip (approximately 1-microm radius) above the membrane surface, while measuring the total impedance between the tip and a large area Pt electrode located on the opposite side of the membrane. Individual pore openings in the high pore density membrane (approximately 8 x 10(4) pores/cm2) are observed in the SECM impedance image. The image contrast is due to the decrease in tip and membrane resistance, in the vicinity of the pore opening. An equivalent circuit for the SECM cell and membrane is proposed and evaluated against the measured SECM imaging impedance. Criteria for employing SECM in impedance mode to image membranes are discussed.  相似文献   

14.
A linear array of eight individual addressable microelectrodes has been developed in order to perform high-throughput scanning electrochemical microscopy (SECM) imaging of large sample areas in contact regime. Similar to previous reports, the soft microelectrode array was fabricated by ablating microchannels on a polyethylene terephthalate (PET) film and filling them with carbon ink. Improvements have been achieved by using a 5 μm thick Parylene coating that allows for smaller working distances, as the probe was mounted with the Parylene coating facing the sample surface. Additionally, the application of a SECM holder allows scanning in contact regime with a tilted probe, reducing the topographic effects and assuring the probe bending direction. The main advantage of the soft microelectrode array is the considerable decrease in the experimental time needed for imaging large sample areas. Additionally, soft microelectrode arrays are very stable and can be used several times, since the electrode surface can be regenerated by blade cutting. Cyclic voltammograms and approach curves were recorded in order to assess the electrochemical properties of the device. An SECM image of a gold on glass chip was obtained with high resolution and sensitivity, proving the feasibility of soft microelectrode arrays to detect localized surface activity. Finite element method (FEM) simulations were performed in order to establish the effect of diffusion layer overlapping between neighboring electrodes on the respective approach curves.  相似文献   

15.
Lee Y  Bard AJ 《Analytical chemistry》2002,74(15):3626-3633
A technique that combines scanning electrochemical microscopy (SECM) and optical microscopy (OM) was implemented with a new probe tip. The tip for scanning electrochemicaVoptical microscopy (SECM/OM) was constructed by insulating a typical gold-coated near-field scanning optical microscopy tip using electrophoretic anodic paint. Once fabricated, the tip was characterized by steady-state cyclic voltammetry, as well as optical and electrochemical approach experiments. This tip generated a stable steady-state current and well-defined SECM approach curves for both conductive and insulating substrates. Durable tips whose geometry was a ring with < 1 microm as outer ring radius could be consistently fabricated. Simultaneous electrochemical and optical images of an interdigitated array electrode were obtained with a resolution on the micrometer scale, demonstrating good performance of the tip as both an optical and an electrochemical probe for imaging microstructures. The SECM feedback current measurements were successfully employed to determine tip-substrate distances for imaging.  相似文献   

16.
Fast-scan cyclic voltammetry (FSCV) is applied to the tip of a scanning electrochemical microscope (SECM) for imaging the distribution of chemical species near a substrate. This approach was used to image the diffusion layer of both a large substrate electrode (3-mm-diameter glassy carbon) and a microelectrode substrate (10-microm-diameter Pt). Additionally, oxygen depletion near living cells was measured and correlated to respiratory activity. Finally, oxygen and hydrogen peroxide were simultaneously detected during the oxidative burst of a zymosan-stimulated macrophage cell. These results demonstrate the utility of FSCV-SECM for chemical imaging when conditions are chosen such that feedback interactions with the substrate are minimal.  相似文献   

17.
Scanning electrochemical microscopy (SECM) was used to study horseradish peroxidase (HRP) immobilized with copolymer on insulating substrates (glass slide or polycarbonate membrane filter). Two methods were used to immobilize HRP: In the first, HRP was coimmobilized by cross-linking on a glass slide with a copolymer swelled in water to form a hydrogel; in the second, the same copolymer and avidin were coimmobilized on the glass slide and biotin-labeled HRP was conjugated to the avidin of the film. SECM was then used to detect the presence of the bound enzyme by observing the feedback current in a solution of benzoquinone and hydrogen peroxide, when hydroquinone was generated at the tip. A detection limit less than 7 x 10(5) HRP molecules within a approximately 7-microm-diameter area was demonstrated.  相似文献   

18.
Undifferentiated and differentiated PC12 cells were imaged with the constant-distance mode of scanning electrochemical microscopy (SECM) using carbon ring and carbon fiber tips. Two types of feedback signals were used for distance control: the electrolysis current of a mediator (constant-current mode) and the impedance measured by the SECM tip (constant-impedance mode). The highest resolution was achieved using carbon ring electrodes with the constant-current mode. However, the constant-impedance mode has the important advantages that topography and faradaic current can be measured simultaneously, and because no mediator is required, the imaging can take place directly in the cell growth media. It was found that vesicular release events do not measurably alter the impedance, but the depolarizing solution, 105 mM K+, produces a dramatic impedance change such that constant-distance imaging cannot be performed during application of the stimulus. However, by operating the tip in the constant-height mode, cell morphology (via a change in impedance) and vesicular release could be detected simultaneously while moving the tip across the cell. This work represents a significant improvement over previous SECM imaging of model neurons, and it demonstrates that the combination of amperometry and constant-impedance SECM has the potential to be a powerful tool for investigating the spatial distribution of neurotransmitter release in vitro.  相似文献   

19.
In scanning electrochemical microscopy (SECM), an approach curve performed in feedback mode involves the downward displacement of a microelectrode toward a substrate while applying a bias to detect dissolved electroactive species at a diffusion-limited rate. The resulting measured current is said to be at steady state. In order to reduce the required measurement time, the approach velocity can be increased. In this paper, we investigate experimentally and theoretically the combination of diffusion and convection processes related to a moving microdisk electrode during feedback approaches. Transient modeling and numerical simulations with moving boundaries are performed, and the results are compared to the experimental approach curves obtained in aqueous solution. The geometry and misalignment of the microelectrode influence the experimental approach curves recorded at high approach velocities. The effects are discussed through the decomposition of the current into transient diffusional, radial convectional, and axial convectional contributions. Finally a ready-to-use expression is provided to rapidly evaluate the maximal approach velocity for steady state measurements as a function of the microelectrode geometry and the physical properties of the media. This expression holds for the more restrictive case of negative feedback as well as other modes, such as SECM approach curves performed at substrates displaying first order kinetics.  相似文献   

20.
Sun P  Mirkin MV 《Analytical chemistry》2007,79(15):5809-5816
Slightly recessed nanoelectrodes were prepared by controlled etching of nanometer-sized, flat Pt electrodes. By using high-frequency (e.g., 2 MHz) ac voltage, the layer of Pt as thin as greater, approximately >3 nm was removed to produce a cylindrical cavity inside the insulating glass sheath. The etched electrodes were characterized by combination of voltammetry and scanning electrochemical microscopy (SECM) to determine the radius and the effective depth of the recess. The theory was developed for current versus distance curves obtained with a recessed tip approaching either a conductive or an insulating substrate. Good agreement between the theoretical and experimental approach curves indicated that recessed nanotips are suitable for quantitative feedback mode SECM experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号