首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
为研究不同车站敷设方式对站台噪声特性的影响,选取同一线路相同站台型式的地下站及高架站展开现场噪声测试,根据列车进、出站时站台噪声水平、站台环境噪声水平及站台背景噪声水平分析车站敷设方式对站台噪声的影响,并根据噪声频谱特性分析两个站台噪声特性的差异。结果表明,两个站台在列车进(出)站时站台进(出)站端等效连续A声级LAeq存在大于现行标准限值80 dB(A)情况,站台中部噪声则始终低于标准限值。列车进、出站引起的地下站台噪声水平略高于高架站站台,其中列车进、出站时LAeq大约为0.3 dB(A)至2.1 dB(A),环境噪声水平LAeq,1h大约为0.8 dB(A)至1.1 dB(A),但无车无广播时高架站站台背景噪声略大于地下站台,大约为1.9 dB(A)。从列车进、出站站台时噪声频谱特性来看,200 Hz以下,两站台噪声峰值频率存在显著差异,高架站台出现在25 Hz至50 Hz,地下站台出现在50 Hz至100 Hz,主要由站台结构振动引起;200 Hz以上,两类站台噪声频谱分布规律基本一致,高架站声压级略小于地下站台,平均小2.0 dB(A)至3.8 d B(A)。建议根据不同敷设方式的车站的结构特性及站台空间形式采取噪声控制措施。  相似文献   

2.
综合交通枢纽站内环境噪声水平直接影响工作人员和旅客的舒适性,关系着铁路站区综合开发的可持续发展。以某综合交通枢纽为工程背景,实测站内不同结构层的声压级水平,并进行时域和频域分析,研究不同类型列车和地铁进出站对站台、候车厅环境噪声的影响。得到以下结论(:1)站台层小时等效声级为65.4 dB(A)~70.2 dB(A)。候车厅高峰时间段小时等效声级为72.8 dB(A),相对于平峰时段高出4.6 dB(A),40 Hz~200 Hz频段范围内噪声实测高于舒适度限值。(2)不同类型列车进出站引起的站台层噪声响应存在最大声压级和响应时间的差异,但频谱响应的优势频段均为400 Hz~2 500 Hz。(3)列车制动进站过程,站台层、候车大厅的低频噪声响应基本不变,列车轮轨碰撞、制动等引起的较高频段的噪声响应迅速增强,主频向高频移动。其中站台层等效A声级为73.8 dB(A),候车大厅为75.3dB(A)。(4)随着与列车通行线路中心线距离的增大,站台关键点噪声响应呈现对数形式的衰减。(5)地铁的通行,对候车大厅的噪声环境影响不大。  相似文献   

3.
该研究在对地下车站站台噪声现场试验及分析的基础上,通过对站台结构的精细化模拟,建立适用于站台结构振动辐射噪声分析的声场有限元模型,对轨道交通列车荷载作用下站台内低频结构噪声进行预测,分析了站台空间内低频结构噪声的声场分布特性,并从声模态的角度揭示了低频噪声传播机理。研究结果表明:地下站台低频噪声在50 Hz~85 Hz内存在显著峰值,主要来源于站台板的结构振动;低频结构噪声在站台不同平面位置的声压级水平表现出显著波动性,声压级大小在68.6 dB~80.4 dB,波动范围为12 dB;站台声腔敏感共振频率对低频结构噪声的影响显著,会显著放大车站低频结构噪声,改变声腔的高度可有效改善低频结构噪声对乘客的影响。  相似文献   

4.
采用噪声与振动测试分析系统,对地铁车辆进入站台和驶出站台及站台广播噪声进行测试与分析。通过对数据分析得出:站台主要噪声源为车辆通过站台时的轮轨噪声与车辆制动啸叫声的叠加,等效声级81.5 dB(A),频率范围200~4 000 Hz。无车辆通过时广播噪声为主要噪声源,等效声级为79.1 dB(A),频率范围为500~1 000 Hz。该研究结果对地铁车站的减振降噪设计具有较高的现实意义和应用价值。  相似文献   

5.
通过对室内噪声的成因分析、室外声经地面传递至室内的各频段声级衰减特征以及典型固定设施噪声在房间内的噪声传递特征分析,认为对于上海市的住宅室内固定设施噪声的研究定义频段应在20~250 Hz以内,以低频噪声为主;为客观反映室内人的主观感受,参照国内外文献,结合对本市不同区域的实测室内声环境“dB(C)~dB(A)”差值对比,建议在制定上海市住宅室内固定设施噪声排放限值标准时采用"dB(C)~dB(A)的差值超过15 dB"指标预判是否存在低频噪声影响,进而再对20~250 Hz间的频谱进行限值控制。通过对低频为主的固定设备噪声特征分析,为本市住宅建筑内固定设施的噪声制定提出限值建议,为住宅室内环境治理及监管提供科学依据。  相似文献   

6.
高速列车引起的环境噪声及声屏障测试分析   总被引:1,自引:0,他引:1  
对武广客运专线上高速运行列车引起的环境噪声及声屏障降噪效果进行了实测,测得大量噪声数据.通过分析得到以下结论:高速列车的机车辐射噪声随列车速度的增大而增大;通过路基段时的辐射噪声为82.8~91.8 dB(A),通过桥梁段时为79.3~89.6 dB(A),随着桥梁和路基高度的逐渐增大,辐射噪声略有减小的趋势;噪声频率主要集中在低频段(f=40~80 Hz)和中频段(f=500~8 000 Hz),与桥梁区段相比,路基区段随频率的增加声能量衰减较为平缓.近期路基段铁路边界噪声值在60~65 dB(A),桥梁段为55~60dB(A);中期(2018年)边界噪声的预测噪声值较近期值有明显增大,最大值接近规范限值.路基声屏障降噪效果为6~8 dB(A),桥梁声屏障降噪效果为6~7 dB(A);声屏障越高降噪效果越明显,3.15 m高声屏障降噪效果较2.65 m高声屏障提升2 dB(A)左右.  相似文献   

7.
应用噪声与振动测试分析系统对内燃机车司机室内部噪声进行测试与分析,得出结果为:司机室内部存在的主要是中、低频噪声,在100~160 Hz和1 250~2 000 Hz两个频段出现峰值,特别是1 600 Hz附近较明显;当机车运行速度低于120 km/h时,运行速度大小对司机室内噪声值影响不大;对于双司机室机车而言,靠近冷却室端的第二司机室的噪声值比远端第一司机室的噪声值高大约2~4 dB(A);相同工况下机车定置时司机室内噪声值比机车运行情况下的测试值要小约2~5 dB(A)。研究结果为内燃机车司机室的减振降噪设计提供依据。  相似文献   

8.
轨道交通的约束阻尼钢轨吸振器技术研究与应用   总被引:1,自引:0,他引:1       下载免费PDF全文
摘要:城市轨道交通的主要是轮轨噪声,抑制钢轨的振动速度,对降低轮钢轨噪声有显著作用,目前的轮轨降噪技术对于轮轨噪声,尤其是500Hz以下的中低频率成分还缺乏理想的制约手段,而影响沿线地区声环境的主要是噪声中的低频成分。在阻尼钢轨、动力吸振器的基础上,开发了一种“动力吸振多层约束阻尼钢轨吸振器”, 有显著降噪效果的频率下限为200Hz。工程应用的结果表明:加钢轨吸振器后,正线的列车通过平均声级比原来降低约4dB(A),列车站台噪声降低2~3 dB(A)。 该型钢轨吸振器现场安装方便,使用的胶粘剂对钢轨没有腐蚀作用,不会造成对线路通讯、钢轨探伤和列车行驶的不良影响。  相似文献   

9.
提出一种基于模态分析的重卡驾驶室低频噪声控制方法,将其应用于一款在怠速工况下低频轰鸣噪声较严重的重型卡车上。首先对车内噪声的频谱特性进行测试分析,获取低频噪声的频率成分信息。然后对驾驶室白车身进行模态分析,确定噪声峰值频率与车身结构振动关系,并对该部位采用阻尼处理以降低结构辐射噪声。对处理后的试验车进行噪声评价测试,结果表明主要频率处的噪声峰值降低了5.4 dB(A)~7.5 dB(A),试验车驾驶室低频噪声得到有效控制。  相似文献   

10.
某型号冰箱压缩机运转时存在噪声值偏大问题。为降低噪声,采用对比测试分析法对5种不同工况下的样机进行了噪声频谱测试与声源识别,确认气动噪声为主要声源,机械噪声为次要声源,而电磁噪声对整机影响较小。气动噪声为排气管内高速高压气体产生周期性气流脉动和气流喷注噪声,呈宽频分布特征,峰值频率为2 000 Hz,对应噪声值为49.3 d B(A)。此外,压缩机激振频率引发排气管低频振动。提出设置排气管消声器与安装弯管减振弹簧等改进措施,与改进前测试结果比较,改进后2 000 Hz处峰值噪声下降13.8 dB(A),整机噪声降低1.83 dB(A)。  相似文献   

11.
脉冲爆震发动机微穿孔消声喷管研究   总被引:2,自引:0,他引:2  
针对脉冲爆震发动机的噪声辐射特性,计算分析微穿孔板孔径、板厚、穿孔率、前后腔厚度等设计参数对单/双层微穿孔板吸声体共振频率、吸声系数的影响。设计并加工一组微穿孔消声喷管。实验研究发现:影双层微穿孔消声喷管对脉冲爆震发动机噪声辐射的降低都有一定的作用,双层结构优于单层结构;消声喷管越长,消声效果越好;发动机工作频率为20Hz时,300mm长双层微穿孔消声喷管可使噪声辐射峰值声压级降低2dB左右,脉冲声压级和声功率级降低4dB左右,声功率从1377.2W下降至542W。  相似文献   

12.
对地铁车辆在静止状态和不同速度下的空调系统开关工况进行噪声测试,对其空调系统噪声特性进行频谱分析,得到其分布规律:静止时空调系统的噪声声压级分布主要集中在160 Hz~2 000 Hz的频率范围内;空调系统噪声对坐与站的乘客的影响约1.5 dB(A)~2 dB(A)左右;车辆低速运行时空调噪声影响比较明显,且速度越低影响越大。该研究结果对地铁车辆减振降噪设计有一定的参考价值。  相似文献   

13.
为降低某型重型卡车怠速噪声,建立驾驶室声-振耦合有限元模型,测试驾驶室四个悬置点被动侧加速度数据,以此作为仿真激励载荷计算驾驶室司机耳旁声压,仿真与试验结果具有较高的一致性.针对怠速工况32 Hz、64 Hz和96 Hz峰值频率,计算各频率的模态参与因子,对模态参与因子较高的模态阶次进行叠加,获取各峰值频率对应的模态应...  相似文献   

14.
公路隧道噪声降噪案例研究   总被引:2,自引:0,他引:2       下载免费PDF全文
陈兴  梁志坚  阙秀明 《声学技术》2008,27(2):244-246
隧道型公共设施的声环境,可以使用大量具有高吸声系数的吸声构造,铺设于隧道拱壁及轨道铺面,以降低混响时间及噪声。文中以在湖南省常张高速公路关口哑隧道吸声安装工程为例,在铺设吸声构造后,其混响时间在装吸声构造后在各1/3倍频带约减少64%~84%,预估降噪量则为4.7~8.5dB之间,在200Hz~800Hz之间,降噪量则有7.1dB~8.5dB之间,降噪效果显著。如以实际公路噪声特性预估,降噪量约有6.3dB(A),SIL(speech interference level)则有6.6dB改善效果。  相似文献   

15.
王伟辉  温翊钧 《声学技术》2014,33(6):531-538
在居家生活中,抽油烟机之噪声甚为扰人而影响生活质量。就现有某型常用抽油烟机,利用声级计量测其噪声量与频谱,并利用人工耳及dB sonic软件分别量测分析其声音质量参数值,所得结果在人耳位置之声级为68.1d B(A),音质粗糙度为33.5 asper,响度为27.8 sone,波动强度为6.8 vacil,尖锐度为1.64 acum,并按王氏之烦躁度模式评估出烦躁度指针为13.19,其中以响度及尖锐度对音质评估之烦躁度指标影响最大。经机壳与机座之振动量测频谱与噪声频谱比较,鉴定出噪声主要峰值频率为500 Hz与100 Hz两个成分音,其中500Hz者为进气口之涡流噪声;而100 Hz者为机壳之振动辐射声。为降低排油烟机之响度及尖锐度以改善其运转时之声音质量,采用了几项对策。分别是:在进气口加装消声器,在机壳内侧贴吸声棉及包覆PU塑料膜,并黏贴阻尼材,所得效果可使噪声量降为55.2 d B(A),振动量减1-5 d B,响度降为14.7 sone,尖锐度降为1.35 acum,烦躁度指标降为8.16。  相似文献   

16.
洗碗机基本属于线性、保守和弱耦合的双壳型声振耦合系统.水流激励是使其产生噪声的主要激励源,具有宽频不相干的特点.根据统计能量分析理论建立的洗碗机250Hz和500Hz倍频带声功率级(Lwf)统计能量分析(Statistical Energy Analysis,SEA)噪声预测模型的精度分别为4dB和2dB.根据该模型制...  相似文献   

17.
城市道路交通噪声监测状况与传播特性   总被引:3,自引:0,他引:3  
针对目前城市道路交通噪声的影响状况,应用大量的城市道路交通噪声例行监测与实测数据,对城市道路交通噪声的变化规律及传播特性进行了分析研究。城市主要道路交通噪声的变化幅度,有80%以上的昼间在2~3 dB(A),夜间在2~4 dB(A);每天12:00~15:00时段的噪声是昼间比较低的噪声,2:00~4:00时段是夜间噪声比较低的时间段;在一定时期内,Ld与Ln的变化幅度≤1.0dB(A),|Ld-Ln|的变化幅度也多在3 dB(A)之内;道路交通噪声的高低及向两侧区域的传播状况与路两侧区域的建筑物坐落方式、外表面的反射等各种环境因素有很大关系。这给城市道路交通噪声的管理与治理提供参考。  相似文献   

18.
为探讨高架桥梁结构噪声的控制措施,以京沪高铁32 m无砟轨道箱梁结构为原型,设计制作1/10的模型试验系统。通过将TD09型高性能阻尼板材分别敷设于箱梁翼缘板、腹板等位置,进行多工况的桥梁结构噪声降噪的模型试验研究。结果表明:高架轨道箱梁结构噪声峰值频段为200~1000 Hz,敷设阻尼板材在峰值频段内具有一定的降噪效果。阻尼板材对桥梁结构降噪效果与阻尼板材的敷设位置有关,其在桥梁结构噪声控制中有一定的应用价值。在峰值频率500 Hz处,翼缘板敷设阻尼板材对翼缘板下侧降噪效果最好,降噪约为1.6 dB(A);腹板敷设阻尼板对底板处的降噪效果最好,降噪可达3.8 dB(A);腹板及翼缘板同时敷设阻尼板材也对底板处的降噪效果最好,降噪可达3 dB(A)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号