首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an investigation of multimode effects of tall buildings idealized as a continuous shear-beam model subjected to near-field pulse-like ground motion. The investigation is based on three analytical approaches: a damped wave solution approach, a fundamental-mode approach, and a modal summation approach. In the modal summation approach, all modal damping ratios are assumed to be equal and a set of Green’s functions for the shear strain response is explicitly derived. The multimode effects on the base-level shear strain/force demands are compared by using an effective response spectrum for shear-beam systems. The study results show that the occurrence of major spectral differences is conditioned on the ratio of the fundamental structural period to the duration of the predominant excitation pulse. Seismic analyses for a set of recorded near-field earthquake data indicate a strong correlation between the characteristics of effective response spectra and the ground pulse parameters.  相似文献   

2.
This paper addresses an alternative methodology to calculate fragility functions that considers multiple limit states parameters, such as combinations of response variables of accelerations and interstory drifts. Limit states are defined using a generalized multidimensional limit states function that allows considering dependencies among limit thresholds modeled as random variables in the calculation of fragility curves that are evaluated as function of the return period. A California hospital is used as example to illustrate the proposed approach for developing fragility curves. The study investigates the sensitivity of the proposed approach for evaluating fragility curves when uncertainties in limit states are considered. Influence of structural and response parameters, such as stiffness, damping, acceleration and displacement thresholds, ground motion input, and uncertainties in structural modeling, are also investigated. The proposed approach can be considered as an alternative approach for describing the vulnerable behavior of nonstructural components that are sensitive to multiple parameters such as displacements and accelerations (e.g., partition walls, piping systems, etc.).  相似文献   

3.
An increasing number of downhole arrays are deployed to measure motions at the ground surface and within the soil profile. Measurements from these arrays provide an opportunity to improve site response models and to better understand underlying dynamic soil behavior. Parametric inverse analysis approaches have been used to identify constitutive model parameters to achieve a better match with field observations. However, they are limited by the selected material model. Nonparametric inverse analysis approaches identify averaged soil behavior between measurement locations. A novel inverse analysis framework, self-learning simulations (SelfSim), is employed to reproduce the measured downhole array response while extracting the underlying soil behavior of individual soil layers unconstrained by prior assumptions of soil behavior. SelfSim is successfully applied to recordings from Lotung and La Cienega. The extracted soil behavior from few events can be used to reliably predict the measured response for other events. The field extracted soil behavior shows dependencies of shear modulus and damping on cyclic shear strain level, number of loading cycles, and strain rate that are similar qualitatively to those reported from laboratory studies but differ quantitatively.  相似文献   

4.
A theoretical approach for the dynamic viscoelastic response of reinforced concrete (RC) beams and one-way slabs strengthened with adhesively bonded composite materials is developed. The analytical model is based on variational principles, dynamic equilibrium, and compatibility of deformations between the structural components (RC beam/slab, adhesive, composite material). The model accounts for the deformability of the adhesive layer and for its high order stress and displacement fields. The equations of motion and the boundary, continuity, and initial conditions are derived via the extended Hamilton’s principle. The Kelvin-Voigt approach is adopted for the consideration of the viscoelastic response of the adhesive material and the internal damping in the composite material and the RC member. The Rayleigh damping model is used for the external viscous damping of the RC member. The dynamic governing equations are solved using the Newmark time integration and a multiple shooting algorithm is used for the solution in space. A numerical example is presented to examine the capabilities of the model, to highlight the unique phenomena associated with the viscoelastic response of the adhesive material, and to demonstrate its influence on the local and global behavior. The results obtained using the analytical model show that the viscoelastic response of the adhesive material may significantly modify the critical shear and peeling stresses at the interfaces of the adhesive layer.  相似文献   

5.
A semiempirical approach to estimate liquefaction-induced lateral displacements using standard penetration test (SPT) or cone penetration test (CPT) data is presented. The approach combines available SPT- and CPT-based methods to evaluate liquefaction potential with laboratory test results for clean sands to estimate the potential maximum cyclic shear strains for saturated sandy soils under seismic loading. A lateral displacement index is then introduced, which is obtained by integrating the maximum cyclic shear strains with depth. Empirical correlations from case history data are proposed between actual lateral displacement, the lateral displacement index, and geometric parameters characterizing ground geometry for gently sloping ground without a free face, level ground with a free face, and gently sloping ground with a free face. The proposed approach can be applied to obtain preliminary estimates of the magnitude of lateral displacements associated with a liquefaction-induced lateral spread.  相似文献   

6.
The response of a beam-column frame to impulsive ground shock, such as those induced by an underground explosion, has characteristics of both impact and natural earthquake responses. The critical effects may be governed by the dynamic response of individual elements as continuous mass systems, while to a certain extent the global vibration (as of lumped-mass systems) may also be involved. To incorporate both dynamic features, the present study proposes a combined continua and lumped parameter (CCLP) model, which consists of the basic beam-column element with distributed stiffness and mass, along with concentrated mass-springs at element ends to form the reduced dynamic system. To take into account of the shear deformation and rotary inertia which become important in the impulsive response, the governing equations are formulated based on the Timoshenko beam theory. The nonlinearities are described through three mechanisms, namely the distributed nonlinear flexural and diagonal shear behavior, and the direct sliding shear at the member ends. A generic restoring force model is adopted to describe the hysteretic behavior. Comparison with a scaled model test demonstrates that the CCLP model is capable of representing the primary dynamic features in a frame structure under impulsive ground shock. Extended parametric studies indicate that, with increase of the ground shock frequency, the failure tends to become shear dominant. For ground shocks of frequency at 20–30?Hz and above, the failure in a reinforced concrete column will require a peak ground velocity (PGV) on the order of 3?m/s, whereas failure in a beam would occur at PGV of about 1.5?m/s.  相似文献   

7.
On-Site Nonlinear Hysteresis Curves and Dynamic Soil Properties   总被引:1,自引:0,他引:1  
Strong motion records at five vertical array sites in Japan are used to examine soil shear modulus and material damping as a function of shear strain during large earthquakes. Acceleration data from the sites are processed directly for evaluation of site shear stress-strain hysteresis curves for different time windows of the record. Results of the analysis demonstrate a significant nonlinear ground response at the sites with surface peak ground accelerations exceeding 90 gal. The results of shear stress-strain hysteresis curves are also used to estimate variation of soil shear modulus and material damping characteristics with shear strain amplitude at each site. The identified shear modulus-shear strain and damping ratio-shear strain relationships are in general agreement with published laboratory results. These response interpretations are also compared with the results of a frequency-domain analysis by using the spectral ratio (uphole∕downhole) technique. There is general agreement between the time- and frequency-domain results. The results illustrate the significance of the site nonlinearity during strong ground motions as well as the accuracy of the dynamic soil properties obtained from laboratory tests.  相似文献   

8.
Model for Dynamic Shear Modulus and Damping for Granular Soils   总被引:2,自引:0,他引:2  
This paper presents a simple four-parameter model that can represent the shear modulus factors and damping coefficients for a granular soil subjected to horizontal shear stresses imposed by vertically propagating shear waves. The input parameters are functions of the confining pressure and density and have been derived from a generalized effective stress soil model referred to as MIT-S1. The predicted shear moduli and damping factors are in excellent agreement with high quality resonant column test data on remolded sands and confining pressures ranging from 30 kPa to 1.8 MPa. The proposed model has been implemented in a frequency domain computer code. By simulating the variations in stiffness and damping with confining pressure, the proposed model provides a more realistic simulation of ground amplification that does not filter out high frequency components of the base excitation.  相似文献   

9.
Time domain reflectometry (TDR) technology has become a valuable tool for detecting displacements and locating shear planes in rock or soil slopes. It is based on transmitting an electromagnetic pulse into a coaxial cable grouted in rock or soil mass and watching for reflections of this transmission due to cable deformity induced by the ground deformation. Early detection of localized shear deformation in soft soils and quantifying the shear displacement using TDR remains a challenging work. The TDR response due to localized shear deformation is affected by cable resistance, soil-grout-cable interaction, and shear bandwidth. A comprehensive TDR wave propagation model considering cable resistance is introduced to model TDR response to cable deformity. Effects of the influencing factors on the relationship between the reflection spike and the shear displacement are investigated through laboratory tests and numerical simulations. The implications to enhancing TDR response and quantifying shear displacement are stressed. Practical suggestions are made, including procedure for correcting resistance effect, selection of cable and grout, and how to quantify shear displacement using TDR.  相似文献   

10.
The stochastic response of the Santa Felicia earth dam, in southern California, to spatially varying earthquake ground motion (SVEGM) is analyzed. An SVEGM model that accounts for both incoherence and propagation of seismic waves is used, the results are compared with those for various simplified excitations, and the sensitivity of the responses to coherency models proposed by different researchers is investigated. A 3D inhomogeneous finite-element model is used to represent the dam. Finite element-based random vibration analysis is performed and the statistical moments of Cartesian displacement, stress, and strain responses are computed. Statistical moments of the maximum shear stress are computed using Monte Carlo simulation that utilizes results from the random vibration analysis. The results indicate that the stress response of stiff material near the base of the dam can be significantly increased due to SVEGM, and that the increase is sensitive to the low-frequency variation of ground motion coherency.  相似文献   

11.
A frequency domain method is presented to compute the impulsive seismic response of circular surface mounted steel and concrete liquid storage tanks incorporating soil-structure interaction (SSI) for layered sites. The method introduces the concept of a near field region in close proximity to the mat foundation and a far field at distance. The near field is modeled as a region of nonlinear soil response with strain compatible shear stiffness and viscous material damping. The shear strain in a representative soil element is used as the basis for strain compatibility in the near field. In the far field, radiation damping using low strain soil response is used. Frequency dependent complex dynamic impedance functions are used in a model that incorporates horizontal displacement and rotation of the foundation. The focus of the paper is on the computation of the horizontal shear force and moment on the tank foundation to enable foundation design. Significant SSI effects are shown to occur for tanks sited on soft soil, especially tanks of a tall slender nature. SSI effects take the form of period elongation and energy loss by radiation damping and foundation soil damping. The effects of SSI for tanks are shown to reverse the trend of force and moment reduction under earthquake loading as is usually assumed by designers. The reasons for this important effect in tank design are given in the paper and relate to the very short period of most tanks, hence, period lengthening may result in load increase. A comparison is made with SSI effects evaluated using the code SEI/ASCE 7-02. Period elongation is found to be similar for relatively stiff soils when assessed by the code compared with the results of the dynamic analysis. For soft soils, the agreement is not as good. Code values of system damping are found to agree reasonably well with an assessment based on the dynamic analyses for the range of periods covered by the code. Energy loss by material damping and radiation damping is discussed. It is shown that energy loss may be computed using the complex dynamic impedance function associated with the viscous dashpot in the analytical model. The proportion of energy loss in the translation mode compared to that dissipated in the rotational mode is addressed as a function of the slenderness of the tank. Energy loss increases substantially with the volume of liquid being stored.  相似文献   

12.
Stay cables, such as are used in cable-stayed bridges, are prone to vibration due to their low inherent damping characteristics. Transversely attached passive viscous dampers have been implemented in many bridges to dampen such vibration. However, only minimal damping can be added if the attachment point is close to the bridge deck. For longer bridge cables, the relative attachment point becomes increasingly smaller, and passive damping may become insufficient. A recent analytical study by the authors demonstrated that “smart” semiactive damping can provide increased supplemental damping. This paper experimentally verifies a smart damping control strategy employing H2/linear quadratic Gaussian (LQG) clipped optimal control using only force and displacement measurements at the damper for an inclined flat-sag cable. A shear mode magnetorheological fluid damper is attached to a 12.65?m inclined flat-sag steel cable to reduce cable vibration. Cable response is seen to be substantially reduced by the smart damper.  相似文献   

13.
An experimental investigation of the dynamic internal shear behavior of a hydrated needle-punched geosynthetic clay liner is presented. Monotonic and cyclic displacement-controlled shear tests were conducted at a single normal stress to investigate the effects of displacement rate, displacement amplitude, number of cycles, frequency, and motion waveform on material response. Monotonic shear tests indicate that peak shear strength first increased and then decreased with increasing displacement rate. Cyclic shear tests indicate that cyclic response was primarily controlled by displacement amplitude. Excitation frequency and waveform had little effect on cyclic shear behavior or postcyclic static shear strength. Number of cycles ( ≥ 10) also had little effect on postcyclic static shear strength. Shear stress versus shear displacement diagrams displayed hysteresis loops that are broadly similar to those for natural soils with some important differences due to the presence of needle-punched reinforcement. Secant shear stiffness displayed strong reduction with increasing displacement amplitude and degradation with continued cycling. Values of damping ratio were significantly higher than those typical of natural clays at lower shear strain levels. Finally, cyclic tests with increasing displacement amplitude yielded progressively lower postcyclic static peak strengths due to greater levels of reinforcement damage. Postcyclic static residual strengths were unaffected by prior cyclic loading.  相似文献   

14.
A regenerative force actuation (RFA) network consists of multiple electromechanical forcing devices distributed throughout a structural system and actuated in such a way as to reduce the response of the structure when it is subjected to an excitation. The associated electronics of the devices are connected together such that they are capable of sharing electrical power with each other. This makes it possible for some devices to extract mechanical energy from the structure while others reinject a portion of that energy back into the structure at other locations. The forcing capability of an RFA network is constrained by the requirement that the total network must always dissipate energy. As such, it differs from fully active control devices in that its operation requires only a small amount of external power. Furthermore, its power-sharing capability gives it a forcing versatility beyond that attainable with semiactive and traditional passive damping systems. In this paper, RFA networks are analyzed in the context of their ability to apply supplemental linear structural damping, taking into account dissipation due to electrical resistances and viscous damping associated with the actuators. It is shown that these systems can be used to produce nonlocal damping (i.e., damping forces between distant degrees of freedom) and asymmetric damping matrices. By comparison, semiactive and passive devices can only impose local damping forces. The more generalized linear damping capabilities of RFA networks are shown to yield significant improvements in linear-quadratic optimal performance in stationary response. Examples are given in which a RFA network is used in various configurations to reduce the stationary response of the three-story shear structure to stochastic base excitation.  相似文献   

15.
From a predictive point of view, it is desirable to characterize the effect of varying model input parameters on the seismic response of soil-foundation systems. In this paper, this issue is studied for shallow foundation systems in dry dense sand with varying vertical factors of safety, embedment depths, demand levels, and moment to shear ratios. Response parameters considered are the moment, shear, sliding, settlement, and rotation demands of the foundation. First-order sensitivity analyses indicate that among the soil input parameters, the friction angle has the most significant effect on capturing the foundation force and displacement demands. Furthermore, the uncertainty in friction angle contributes 80% of the variance of the settlement demand and 40% of the variance of the moment demand. It is also found that the uncertainty in Poisson’s ratio has a marginal effect in predicting the studied foundation response. Although the findings of this study are limited to the parameter space considered herein and care should be taken for broader applicability, it does shed light on which parameters uncertainty should be minimized.  相似文献   

16.
沿黄河高速公路建设过程中,黄河泥沙作为路基填料的可行性已经得到验证和重视,然而目前有关黄河泥沙作为路基填料的动力特性的研究较少.本文利用英国GDS动态三轴试验系统,对取自黄河中下游郑州段的泥沙进行应力控制的动三轴试验,探究了围压、相对密实度和试验频率对黄河泥沙动剪应力–动剪应变关系、动剪切模量G和阻尼比D的影响,绘制了动剪应力–动剪应变关系骨干曲线和滞回曲线.结果表明,黄河泥沙的动剪切模量、阻尼比与剪应变关系可以用Hardin双曲线模型描述,围压对G和D的影响较大、试验频率对G和D的影响较小.综合与其他土体的动力特性对比表明,黄河泥沙动剪切模量折减曲线规律以及阻尼比D曲线规律和其他土体相符,其动力特性更接近于粉土和砂土,但与其他土体并不完全一致,具有一定的特殊性.最后,本文考虑了围压、相对密实度的影响,并结合现有经验公式,建立可以较好描述黄河泥沙最大动剪切模量Gmax与围压、孔隙比关系的经验公式,同时建立了动剪切模量比G/Gmax和D的数学模型,拟合结果显示,建立的模型能较好地描述黄河泥沙的G/Gmax和D随剪应变的变化...  相似文献   

17.
为了研究锚杆在典型约束条件下受瞬态激振作用的响应特征,假定锚杆受激振动的范围均在弹性限度内且截面保持为平面、材料均匀各向同性,基于一维波动理论,根据达朗贝尔原理引入抗剪刚度和摩擦阻尼系数建立锚杆受激振动的波动方程。在求解过程中,引入狄拉克δ函数,运用特征值法得到两端自由和一端自由一端固定2种边界条件下锚杆的位移、速度和加速度场的解析解。分析锚杆受激振时的位移、加速度响应曲线,结果表明:因阻尼影响,一端固定一端自由的锚杆受瞬态激振时位移响应的衰减比两端自由的锚杆要快;另外,受锚杆侧向阻尼和抗剪刚度影响,一端固定一端自由的锚杆加速度响应振动幅值比两端自由状态下低大约4个数量级。  相似文献   

18.
This paper presents experimental data and numerical modeling results that illustrate the effects of progressive failure on the measured shear strength of a textured geomembrane/geosynthetic clay liner (GMX/GCL) interface. Large direct shear tests were conducted using different specimen gripping/clamping systems to isolate the effects of progressive failure. These tests indicate that progressive failure causes a reduction in measured peak shear strength, an increase in the displacement at peak, an increase in large displacement shear strength, and significant distortion of the shear stress–displacement relationship. A numerical model was developed to simulate progressive failure of a GMX/GCL interface. Measured and simulated shear stress–displacement relationships are in good-to-excellent agreement at four normal stress levels. The model was then used to investigate mechanisms of progressive interface failure and factors that control its significance. The results indicate that accurate measurements of shear stress–displacement behavior and strength are obtained when gripping surfaces prevent slippage of the test specimen and the intended failure surface has the lowest shear resistance of all possible sliding surfaces. The use of proper gripping surfaces is expected to reduce difficulties in test data interpretation and to increase the accuracy and reproducibility of test results.  相似文献   

19.
Many reinforced concrete (RC) frame structures designed according to pre1970 strength-based codes are susceptible to abrupt strength deterioration once the shear capacity of the columns is reached. Fiber composites are used to increase the shear strength of existing RC columns and beams by wrapping or partially wrapping the members. Increasing the shear strength can alter the failure mode to be more ductile with higher energy dissipation and interstorey drift ratio capacities. The objective of this study was to analytically evaluate the effect of varying distributions of fiber-reinforced polymer (FRP) rehabilitation on the seismic performance of three existing RC frames with different heights when subjected to three types of scaled ground motion records. The FRP wrapping is designed to increase the displacement ductility of frame members to reach certain values representing moderate ductility and high ductility levels. These values were assumed based on previous experimental work conducted on members wrapped using FRP. The study also investigates the effect of the selected element’s force–displacement backbone curve on the capacities of the structures with respect to maximum interstory drift ratio, maximum peak ground acceleration, or peak ground velocity resisted by the frames, maximum storey shear-to-weight ratio and maximum energy dissipation. It was found that for low-rise buildings, the FRP rehabilitation of columns only was effective in enhancing the seismic performance; while for high-rise ones, rehabilitation of columns only was not as effective as rehabilitation of both columns and beams. Ignoring representing the postpeak strength degradation in the hysteretic nonlinear model of FRP-rehabilitated RC members was found to lead to erroneous overestimation of the seismic performance of the structure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号