首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了d31横向伸缩模式压电徽位移驱动器的制作过程,应用高稳定的填满钨青铜型压电陶瓷作为该器件制备的基料,利用P-F干涉仪原理测量了电场-位移特性曲线,由此计算了压电常数d31并进行了讨论。该器件具有电控应变(位移)线性度高、滞后量小以及结构简单、制作工艺方便等特点,它在精密光学等技术领域有一定应用价值。  相似文献   

2.
提出利用一次逆、二次正压电效应为同一压电体内的双向效应原理,进行传感器与执行器集成一体化——自感知执行器的研究.即利用一次逆压电效应输出一个微位移,作为执行器使用;利用二次正压电效应的输出电荷自感知执行器的输出位移,作为传感器使用.在准静态(电压0~50V)和低频(电压100V,频率10Hz)条件下,分别进行了一次逆压电效应输出位移、二次正压电效应输出电压的实验,并将得到的数据进行归一化处理.实验结果表明,通过测量二次正压电效应产生的电荷能够较好地自感知一次逆压电效应产生的位移.  相似文献   

3.
This article presents an electromechanical analysis for a piezoelectric bimorph actuator with a flexible extension, which is used to increase the tip deflection. The performance measuring attributes of such an actuator are derived, and a genetic algorithm is used for multi-objective optimization. The analysis reveals that for a thick flexible extension, the length of the extension provides Pareto optimal solutions for multi-objective optimization. The analysis also shows that as the thickness of the flexible extension decreases, the Pareto optimal solutions converge to a single solution for multi-objective optimization. We have considered nonlinear deflection behavior of piezoelectric materials at high electric fields, and series and parallel electrical connections in the analysis.  相似文献   

4.
王锋  唐国金  李道奎 《工程力学》2006,23(4):166-171,176
研究了压电结构中压电片厚度和嵌入深度的优化问题。首先给出了压电层合板的高阶耦合分析模型;然后以不受约束的含压电铺层复合材料板为代表,在压电层厚度方向施加电场时板自由变形,假设板任意微元横截面上内力为零,以其弯(扭)曲曲率最大为优化目标,建立了求解压电片最优厚度和嵌入深度问题的约束优化模型。最后分别以各向同性板中嵌入各项同性压电片和复合材料板中嵌入各向异性压电片为例进行了分析,绘出了目标函数的三维曲面图及等高线图,结果表明压电片的作动效能与其厚度和嵌入位置密切相关,而最优厚度和嵌入位置是由压电片和基体的材料特性决定的。  相似文献   

5.
Abstract

In this paper, theoretical and experimental study on a piezoelectric vibration‐induced micro power generator that can convert mechanical vibration energy into electrical energy is presented. The mechanical‐electrical energy conversion mechanism is a voltage between two capacitors, which belong to the mechanical and the piezoelectric equivalent circuits, respectively. To verify the theoretical analysis, two clusters of transducer structures are fabricated. Piezoelectric lead zirconate titanate (PZT) material is chosen to make the energy conversion transducer. The desired shape of the piezoelectric generator with its resonance frequency in accordance with the ambient vibration source is designed by finite element analysis (FEA).

Experimental results show that the maximum output voltages are generated at the first mode resonance frequencies of the structure. The overall conversion efficiency is measured to be 33%. The experimental results coincide with the theoretical analysis.  相似文献   

6.
逆压电效应的压电常数和压电陶瓷微位移驱动器   总被引:9,自引:2,他引:7  
本文介绍了由过压电效应的应变-电场曲线测得弱场和强场下的压电常数d33、d31.测量发现S~E曲线上呈现应变和压电系数突增的阈值场强Eb,用铁电陶瓷固有的90°畴转向对应变的贡献进行了分析和讨论.该方法与以往常用的正压电效应的压电常数测试相比,方便、简单,尤其对过压电效应的压电微位移驱动器应用更具有实际意义.  相似文献   

7.
压电陶瓷能将弹药发射环境中的机械能转换为电能,压电电源就是基于此特性为引信供电的环境能源。提出一种压电发电建模方法,利用其对引信压电电源的发电特性进行了理论研究。共包括两个步骤:利用总能量求偏导法推导出并联压电叠堆产生的电压、电荷及电能公式;将压电结构发电模型等效为电路形式,利用电路知识分析得到压电电源的电能输出表达式。然后利用MATLAB软件进行了数值仿真分析,最后以所得理论模型为指导、以最大化提高发电量为目的进行压电电源的设计。  相似文献   

8.
We study thickness-twist vibration of a finite, piezoelectric plate of polarized ceramics or 6-mm crystals driven by surface mechanical loads. An exact solution from the three-dimensional equations of piezoelectricity is obtained. The plate is properly electroded and connected to a circuit such that an electric output is generated. The structure analyzed represents a piezoelectric generator for converting mechanical energy to electrical energy. Analytical expressions for the output voltage, current, power, efficiency, and power density are given. The basic behaviors of the generator are shown by numerical results.  相似文献   

9.
结构振动主动控制可以采用压电自感知执行器。空分复用解耦方法是实现压电自感知执行器的一种新方法,实质是采用几何方法解耦,即将压电片的一个完整电极分割为执行区和传感区以实现自感知。本文以悬臂梁为对象,以涡流位移计作为标准传感器,对两种电极分割方式的压电片的传感和执行效果进行了实验研究。通过测量压电梁的频率特性,证明了空分复用的压电陶瓷片同时兼有传感和执行两种功能。实验结果也表明传感区的敏感输出受到执行区激励电压的静电耦合的影响,利用悬臂梁存在反谐振点的特性,提出了一种定量测量静电耦合的方法,并测定了不同电极宽度、不同极间隙下的静电耦合系数。本文的工作为采用空分复用的压电自感知执行器进行振动主动控制奠定了基础。  相似文献   

10.
A new technique of transmitting electric energy wirelessly to piezoelectric components by using a dipole antenna-like electric field generator is explored. Two square size brass plate-shaped live and ground electrodes are used to form a dipole antenna-like electric field generator. When the dipole antenna-like electric field generator in electric resonance with an inductor, a maximum output power of 2.72 mW and an energy conversion efficiency of 0.0174% have been achieved wirelessly by the piezoelectric plate area of 40 mm2 operating in the thickness vibration mode, placed at the center 4 mm away from the antenna plane with an optimum electrical load of 1365 Ω, resonant frequency of 782 kHz, 1 cm electrodes separation, 2500 cm2 electrode area of dipole antenna-like structure, and input ac source power of 15.58 W applied to the series of dipole antenna-like structure and inductor. The theoretically calculated results have been validated by the experimental studies. It is seen that at the resonance frequency and optimum electrical load, the output power of the wirelessly driven piezoelectric component decreases with the size of piezoelectric component, distance of piezoelectric component from the electrode of antenna plane, but increases with the antenna electrode area.  相似文献   

11.
12.
This paper describes the use of an integrated piezoelectric sensor/actuator (IPSA) layer to detect a delamination in a laminated composite beam by monitoring the sensor charge output (SCO) distributions along the beam of the first three order frequencies. For the sake of predicting the first three order frequencies and SCO distributions using the IPSA layer, a model-based delamination detection approach is presented. The corresponding dynamic analytical model that includes parameters characterizing delamination is developed using the classical beam theory and the assumption of constant peel and shear strains through the bond line thickness in bonded joint. Using the present analytical model, the effects of delamination length ld, delamination gap tg, actuator segment length la, actuator segment location Xa and electric field E on the SCO values are discussed. Finally, a comparison of the first three order frequencies between the present analytical and finite element analysis (FEA) models reveals that there is good agreement between these two models.  相似文献   

13.
This paper reports on the analysis of the strip dielectric breakdown (DB) model for an electrically impermeable crack in a piezoelectric medium based on the general linear constitutive equations. The DB model assumes that the electric field in a strip ahead of the crack tip is equal to the dielectric breakdown strength, which is in analogy with the classical Dugdale model for plastic yielding. Using the Stroh formalism and the dislocation modeling of a crack, we derived the relationship between the DB strip size and applied mechanical and electrical loads, the intensity factors of stresses and electric displacement, and the local energy release rate. Based on the results, we discussed the effect of electric fields on fracture of a transversely isotropic piezoelectric ceramic by applying the local energy release rate as a failure criterion. It is shown that for an impermeable crack perpendicular to the poling direction, a positive electric field will assist an applied mechanical stress to propagate the crack, while a negative electric field will retard crack propagation. However, for an impermeable crack parallel to the poling direction, it is found that the applied electric field does not change the mode I stress intensity factor and the local energy release rate, i.e., the applied electric field has no effect on the crack growth.  相似文献   

14.
X. D. Wang  G. L. Huang 《Acta Mechanica》2006,183(3-4):155-176
Summary Piezoelectric actuators can be used to generate high-frequency elastic waves for damage identification of materials. This paper provides a comprehensive theoretical study of the electromechanical behavior of surface-bonded or embedded piezoelectric actuators under inplane electric fields. A modified one-dimensional actuator model is introduced, from which arbitrarily distributed electric fields along the actuator can be considered. The model is used to simulate the dynamic load transfer between the actuator and the host medium and the resulting elastic wave propagation by using the integral transform method and solving the resulting singular integral equations. Of particular interest is the generated waveform away from the actuator under different electric fields. An asymptotic analysis is conducted to obtain the far-field solution of the wave field. The property of the resulting waveform is studied, and the simulation shows that the direction of wave propagation can be adjusted by controlling the phase distribution of the applied electric field along the actuator.  相似文献   

15.
The successful design of piezoelectric energy harvesting devices relies upon the identification of optimal geometrical and material configurations to maximize the power output for a specific band of excitation frequencies. Extendable predictive models and associated approximate solution methods are essential for analysis of a wide variety of future advanced energy harvesting devices involving more complex geometries and material distributions. Based on a holistic continuum mechanics modeling approach to the multi‐physics energy harvesting problem, this article proposes a monolithic numerical solution scheme using a mixed‐hybrid 3‐dimensional finite element formulation of the coupled governing equations for analysis in time and frequency domain. The weak form of the electromechanical/circuit system uses velocities and potential rate within the piezoelectric structure, free boundary charge on the electrodes, and potential at the level of the generic electric circuit as global degrees of freedom. The approximation of stress and dielectric displacement follows the work by Pian, Sze, and Pan. Results obtained with the proposed model are compared with analytical results for the reduced‐order model of a cantilevered bimorph harvester with tip mass reported in the literature. The flexibility of the method is demonstrated by studying the influence of partial electrode coverage on the generated power output.  相似文献   

16.
In this work, we report a functionally gradient piezoelectric ceramic actuator with sandwiched structure prepared by the powder metallurgical method. The functional gradients of piezoelectric activity and dielectric activity vary inversely across the thickness of the actuator. Such functional gradients are obtained by interdiffusion reaction between a high piezoelectric composition [Pb(Zr,Ti)O3/PZT] and a high dielectric composition (PbNi1/3Nb2/3O3/PNN). The bending displacement at the free end of the PNN/PZT functionally graded piezoelectric ceramic actuator was approximately 20 m when 1.4-kV/mm electric field was applied. The grain morphology and compositional distribution across the actuator section and the microstructures of the sandwiched layer were investigated by scanned electron microscopy equipped with energy-dispersive spectroscopy, transmission electron microscopy, and selected area electron diffraction patterns, respectively.  相似文献   

17.
压电复合梁热机电耦合有限元模型   总被引:1,自引:0,他引:1  
蒋建平  李东旭 《振动与冲击》2007,26(10):19-22,40
压电材料应用于航天结构形状或振动控制时,可能会受到热场、力场和电场的共同作用。为分析处于热场、力场和电场共同作用下的压电复合结构,文中基于高阶剪切变形理论、高阶电势模型和线性温度分布假设,利用虚功原理建立了压电复合梁结构的热-机-电耦合有限元模型。该模型可应用于热机电耦合压电复合结构的形状与振动控制研究。利用本文模型对压电双晶片梁、压电复合悬臂梁进行了数值仿真,仿真结果与文献给出的理论结果和实验值吻合良好,表明本文模型是正确有效的。  相似文献   

18.
摘要:为实现对不同方向环境振动能量的收集,提出了一种新颖的多方向振动能量收集装置的设计结构,装置的换能部分采用了一种Rainbow型压电结构。为提高多方向振动能量收集装置收集能量的效果,以多方向振动能量收集装置输出的总电能为目标函数,综合考虑金属弹性基片的强度、装置振动的固有频率及装置的尺寸空间要求等多种因素,采用序列二次规划法对能量收集装置的结构参数进行了优化。该多方向振动能量收集装置经过优化后,在Y向激励时,其输出的总电能为37.146μJ,比优化前提高了30.82%,当沿装置体对角线方向激励时,结构装置输出的总电能为58.715μJ,比优化前提高了29.24%,装置的能量收集效果得到了明显提高。分析结果为多方向振动能量收集装置的设计、制造及应用提供了技术依据。  相似文献   

19.
研制了一种压电弯曲元件型压电驱动器,该驱动器用于电液伺服阀的电-机械转换器.压电驱动器由三层结构构建,其中中间弹性层为铍青铜,在铍青铜的上下表面各粘接一片压电晶片,材料为PZT-5H.利用激光测微仪LC-2400A及LV-1610对压电驱动器的输出位移、位移滞环及谐振频率进行了实验测量,分析了压电驱动器尺寸与其特性之间的关系.实验结果表明,该驱动器满足所设计电液伺服阀的性能要求.  相似文献   

20.
The nonlinear behavior of piezoelectric composites becomes prominent when the composites are subjected to high electric fields, which is often the case in actuator applications. Understanding the nonlinear behavior of piezoelectric composites is crucial in designing structures comprising of these materials. This study presents micromechanics models for predicting nonlinear electro-mechanical responses of polarized piezoelectric composites, comprising of a linear non-piezoelectric homogeneous medium (matrix) reinforced by either nonlinear piezoelectric fibers or particles, subjected to high electric fields. The maximum electric field applied is within the coercive electric field limit. The constitutive relations for the polarized piezoelectric inclusions consist of the third- and fourth-order electro-mechanical coupling tensors and the second- and third-order electric permeability tensors. The Mori–Tanaka micromechanics and simplified unit-cell micromechanics models are formulated to predict the effective nonlinear electro-mechanical responses of piezoelectric fiber reinforced and particle reinforced composites, respectively. Linearized micromechanical relations are first used to provide trial solutions followed by iterative schemes in order to correct errors from linearizing the nonlinear responses. Numerical results are presented to illustrate the performance of each micromechanics model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号