首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A numerical procedure for analysis of general laminated plates under transverse load is developed utilizing the Mindlin plate theory, the finite volume discretization, and a segregated solution algorithm. The force and moment balance equations with the laminate constitutive relations are written in the form of a generic transport equation. In order to obtain discrete counterparts of the governing equations, the plate is subdivided into N control volumes by a Cartesian numerical mesh. As a result, five sets of N linear equations with N unknowns are obtained and solved using the conjugate gradient method with preconditioning. For the method validation, a number of test cases are designed to cover thick and thin laminated plates with aspect ratio (width to thickness) from 4 to 100. Simply supported orthotropic, symmetric cross‐ply, and angle‐ply laminated plates under uniform and sinusoidal pressure loads are solved, and results are compared with available analytical solutions. The shear correction factor of 5/6 is utilized throughout the procedure, which is consistent with test cases used in the reviewed literature. Comparisons of the finite volume method results for maximum deflections at the center of the plate and the Navier solutions obtained for aspect ratios 10, 20, and 100 shows a very good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
3.
This research present the development of geometrically nonlinear NURBS isogeometric finite element analysis of laminated composite plates. First-order, shear-deformable laminate composite plate theory is utilized in deriving the governing equations using a variational formulation. Geometric nonlinearity is accounted for in Von-Karman sense. A family of NURBS elements are constructed from refinement processes and validated using various examples. k-refined NURBS elements are developed to study thin plates. Isotropic, orthotropic and laminated composite plates are studied for various boundary conditions, length to thickness ratios and ply-angles. Computed center deflection is found to be in an excellent agreement with the literature. For thin plate analysis, linear and k-refined quadratic NURBS element is found to remedy the shear locking problem. k-refined quadratic NURBS element provide stabilized response to distorted, coarse meshes without increasing the order of the polynomial, owing to the increased smoothness of solution space.  相似文献   

4.
The problem of nonlinear aeroelasticity of a general laminated composite plate in supersonic air flow is examined. The classical plate theory along with the von-Karman nonlinear strains is used for structural modeling, and linear piston theory is used for aerodynamic modeling. The coupled partial differential equations of motion are derived by use of Hamilton’s principle and Galerkin’s method is used to reduce the governing equations to a system of nonlinear ordinary differential equations in time, which are then solved by a direct numerical integration method. Effects of in-plane force, static pressure differential, fiber orientation and aerodynamic damping on the nonlinear aeroelastic behavior of the plate are studied. Results show that the fiber orientation has significant effect on dynamic behavior of the plate and the asymmetric properties, changes the behavior of the limit cycle oscillation.  相似文献   

5.
A new improved discrete Kirchhoff quadrilateral element based on the third‐order zigzag theory is developed for the static analysis of composite and sandwich plates. The element has seven degrees of freedom per node, namely, the three displacements, two rotations and two transverse shear strain components at the mid‐surface. The usual requirement of C1 continuity of interpolation functions of the deflection in the third‐order zigzag theory is circumvented by employing the improved discrete Kirchhoff constraint technique. The element is free from the shear locking. The finite element formulation and the computer program are validated by comparing the results for simply supported plate with the analytical Navier solution of the zigzag theory. Comparison of the present results with those using other available elements based on zigzag theories for composite and sandwich plates establishes the superiority of the present element in respect of simplicity, accuracy and computational efficiency. The accuracy of the zigzag theory is assessed by comparing the finite element results of the square all‐round clamped composite plates with the converged three‐dimensional finite element solution obtained using ABAQUS. The comparisons also establish the superiority of the zigzag theory over the smeared third‐order theory having the same number of degrees of freedom. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A semi-analytical finite element for laminated composite plates   总被引:2,自引:0,他引:2  
H. Y. Sheng  J. Q. Ye   《Composite Structures》2002,57(1-4):117-123
This paper presents a semi-analytical finite element solution for laminated composite plates. The method is based on a mixed variational principle that involves both displacements and stresses. Finite element meshes are only used in the plane of plate, while the through thickness distributions of displacements and stresses are obtained using the method of state equations. Numerical results show that the rate of convergence of the new method is fast and the solutions can be very close to corresponding exact three-dimensional ones. The use of a recursive formulation of the state equations leads to an algebra equation system, from which solution are sought, whose dimension is independent of the numbers of layers of the plate considered.  相似文献   

7.
The present work focuses on a posteriori, equilibrium based, reconstruction of transverse stress profiles in the finite element analysis of FSDT laminated plates. The accuracy of this reconstruction depends on accuracy of the first and second-order derivatives of the plate stress resultants, which is not guaranteed by most available low-order plate finite elements. To cure this trouble, two different strategies, based on the Recovery by Compatibility in Patches procedure, are here proposed and compared. Numerical results of typical reconstructed transverse stress profiles are presented showing the effectiveness of the proposed approach.  相似文献   

8.
Abstract

A mixed finite element scheme based on assumed local high‐order displacements is proposed for the free vibration of thick laminated plates. The effects of transverse shear deformation, transverse normal stress and rotary inertia are considered in the formulation. Cross‐ply laminates with simple supports and angle‐ply laminates with clamped edges are presented as examples. The three dimensional elasticity solutions of cross‐ply laminates with simple supports are used to assess the accuracy of the present scheme. The effects of the span‐to‐thickness, aspect and material anisotropy ratio on the fundamental natural frequency are investigated. The present results are compared with the results in the published literature, and agree closely with the 3‐D elasticity solutions.  相似文献   

9.
A V Krishna Murty 《Sadhana》1987,11(3-4):357-365
Formulation of appropriate governing equations, simpler than the three-dimensional equations of elasticity yet capable of predicting, fairly accurately, all important response parameters such as stress and strain, is attempted in modelling a structural component. Several theoretical models are available in the literature for the analyses of plates. The emergence of fibre-reinforced plastics as an attractive form of structural construction, added a new complexity to the modelling considerations of laminates by requiring the estimation of the interlaminar stresses and strains. In this paper, modelling considerations of laminated composite plates are discussed. The classical laminated plate theory and higher-order shear deformation models are reviewed to bring out their interlaminar stress predictive capabilities, and some new modelling possibilities are indicated. This work has been supported by the Aeronautics Research and Development Board, Ministry of Defence, Government of India.  相似文献   

10.
A new 4-node quadrilateral finite element is developed for the analysis of laminated composite plates containing distributed piezoelectric layers (surface bonded or embedded). The mechanical part of the element formulation is based on the first-order shear deformation theory. The formulation is established by generalizing that of the high performance Mindlin plate element ARS-Q12, which was derived based on the DKQ element formulation and Timoshenko’s beam theory. The layerwise linear theory is applied to deal with electric potential. Therefore, the number of electrical DOF is a variable depending on the number of plate sub-layers. Thus, there is no need to make any special assumptions with regards to the through-thickness variation of the electric potential, which is the true situation. Furthermore, a new “partial hybrid”-enhanced procedure is presented to improve the stresses solutions, especially for the calculation of transverse shear stresses. The proposed element, denoted as CTMQE, is free of shear locking and it exhibits excellent capability in the analysis of thin to moderately thick piezoelectric laminated composite plates.  相似文献   

11.
Two simple 4‐node 20‐DOF and 4‐node 24‐DOF displacement‐based quadrilateral elements named RDKQ‐L20 and RDKQ‐L24 are developed in this paper based on the first‐order shear deformation theory (FSDT) for linear analysis of thin to moderately thick laminates. The deflection and rotation functions of the element sides are obtained from Timoshenko's laminated composite beam functions. Linear displacement interpolation functions of the standard 4‐node quadrilateral isoparametric plane element and displacement functions of a quadrilateral plane element with drilling degrees of freedom are taken as in‐plane displacements of the proposed elements RDKQ‐L20 and RDKQ‐L24, respectively. Due to the application of Timoshenko's laminated composite beam functions, convergence can be ensured theoretically for very thin laminates. The elements are simple in formulation, and shear‐locking free for extremely thin laminates even with full integration. A hybrid‐enhanced procedure is employed to improve the accuracy of stress analysis, especially for transverse shear stresses. Numerical tests show that the new elements are convergent, not sensitive to mesh distortion, accurate and efficient for analysis of thin to moderately thick laminates. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
This paper reports the development of a simple but efficient and accurate four-node quadrilateral element for models of laminated, anisotropic plate behaviour within the framework of the first-order shear deformation theory. The approach incorporates the strain smoothing method for mesh-free conforming nodal integration into the conventional finite element techniques. The membrane-bending part of the element stiffness matrix is calculated by the line integral on the boundaries of the smoothing elements while the shear part is performed using an independent interpolation field in the natural co-ordinate system. Numerical results show that the element offered here is locking-free for extremely thin laminates, reliable and accurate, and easy to implement. Its convergence properties are insensitive to mesh distortion, thickness-span ratios, lay-up sequence and degree of anisotropy.  相似文献   

13.
At present, it is difficult to accurately predict natural frequencies of sandwich plates with soft core by using the C0 plate bending elements. Thus, the C1 plate bending elements have to be employed to predict accurately dynamic response of such structures. This paper proposes an accurate higher-order C0 theory which is very different from other published higher-order theory satisfying the interlaminar stress continuity, as the first derivative of transverse displacement has been taken out from the in-plane displacement fields of the present theory. Therefore, the C0 interpolation functions is only required during its finite element implementation. Based on the Hamilton’s principle and Navier’s technique, analytical solutions to the natural frequency analysis of simply-supported laminated plates have been presented. To further extend the ranges of application of the proposed theory, an eight-node C0 continuous isoparametric element is used to model the proposed theory. Numerical results show the present C0 finite element can accurately predict the natural frequencies of sandwich plate with soft core, whereas other global higher-order theories are unsuitable for free vibration analysis of such soft-core structures.  相似文献   

14.
This paper presents a finite element model based on the first order shear deformation theory to investigate the dynamic behavior of laminated composite plates traversed by a moving oscillator. The oscillator model is assumed to be consisting of two nodal masses that are connected by means of a spring-damper unit. The governing equations of motion of two sub-systems are separately integrated by applying the Newmark’s time integration procedure. Then, the obtained equations are coupled and the responses of system components are calculated in each time step. The accuracy of algorithm is verified by comparing the numerical results of static, free vibration and simplified moving force problems analysis with the available exact solutions and other numerical results in the literature. Also, the effects of mass ratio, damping ratio of system components, stiffness of suspension system, velocity and eccentricity of moving oscillator on dynamic responses is parametrically studied. This algorithm can be applied to various boundary conditions, lamination schemes and fiber angels.  相似文献   

15.
A super finite element method that exhibits coarse-mesh accuracy is used to predict the transient response of laminated composite plates and cylindrical shells subjected to non-penetrating impact by projectiles. The governing equations are based on the classical theories of thin laminated plates and shells taking into account the von Karman kinematics assumptions for moderately large deflections. A non-linear Hertzian-type contact law accounting for curvatures of the colliding bodies is adopted to calculate the impact force . The theoretical basis of the present finite element model is verified by analysing impact-loaded laminated composite plate and shell structures that have previously been studied through analytical or other numerical procedures. The predictive capability of the present numerical approach is successfully demonstrated through comparisons between experimentally-measured and computed force-time histories for impact of carbon fibre-reinforced plastic (CFRP) plates. The current computational model offers a relatively simple and efficient means of predicting the structural impact response of laminated composite plates and shells.  相似文献   

16.
17.
A new bilinear four‐noded quadrilateral element (called quadrilateral linear refined zigzag) for the analysis of composite laminated and sandwich plates/shells based on the refined zigzag theory is presented. The element has seven kinematic variables per node. Shear locking is avoided by introducing an assumed linear shear strain field. The performance of the element is studied in several examples where the reference solution is the 3D finite element analysis using 20‐noded hexahedral elements. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A family of simple, displacement-based and shear-flexible triangular and quadrilateral flat plate/shell elements for linear and geometrically nonlinear analysis of thin to moderately thick laminate composite plates are introduced and summarized in this paper.

The developed elements are based on the first-order shear deformation theory (FSDT) and von-Karman’s large deflection theory, and total Lagrangian approach is employed to formulate the element for geometrically nonlinear analysis. The deflection and rotation functions of the element boundary are obtained from Timoshenko’s laminated composite beam functions, thus convergence can be ensured theoretically for very thin laminates and shear-locking problem is avoided naturally.

The flat triangular plate/shell element is of 3-node, 18-degree-of-freedom, and the plane displacement interpolation functions of the Allman’s triangular membrane element with drilling degrees of freedom are taken as the in-plane displacements of the element. The flat quadrilateral plate/shell element is of 4-node, 24-degree-of-freedom, and the linear displacement interpolation functions of a quadrilateral plane element with drilling degrees of freedom are taken as the in-plane displacements.

The developed elements are simple in formulation, free from shear-locking, and include conventional engineering degrees of freedom. Numerical examples demonstrate that the elements are convergent, not sensitive to mesh distortion, accurate and efficient for linear and geometric nonlinear analysis of thin to moderately thick laminates.  相似文献   


19.
The combined effects of thermal and mechanical loadings on the distribution of interlaminar shear stresses in composite laminated thin and moderately thick composite plates are investigated numerically using the commercially available software package MSC NASTRAN/PATRAN. The validity of the present finite element analysis is demonstrated by comparing the interlaminar shear stresses evaluated using the experimental measurement. Various parametric studies are also performed to investigate the effect of stacking sequences, length to thickness ratio, and boundary conditions on the interlaminar shear stresses with identical mechanical and thermal loadings. It is observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber-reinforced composite laminated plates are much higher in asymmetric cross-ply laminate and anti-symmetric laminate compared to symmetric cross-ply laminate and unidirectional laminate under identical loadings and boundary conditions.  相似文献   

20.
The thermal postbuckling behavior of graphite/epoxy multi-layered rectangular plates of various boundary conditions is studied using the finite element method. Temperature dependent thermal and elastic properties of the material are used in the analysis. The nonlinear finite element equations are solved as a sequence of linear eigenvalue problems to trace the thermal postbuckling paths of 15-layered symmetric angle-ply plates. The presence of secondary instability with an unsymmetric deformation mode has been identified for symmetric laminates under uniform temperature rise. In the case of linearly varying temperature rise through the thickness of the plate, the nonlinear equilibrium equations are solved by the modified Newton–Raphson technique to get the temperature-displacement curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号