首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thauer  E.  Zakharova  G. S.  Andreikov  E. I.  Adam  V.  Wegener  S. A.  Nölke  J. -H.  Singer  L.  Ottmann  A.  Asyuda  A.  Zharnikov  M.  Kiselkov  D. M.  Zhu  Q.  Puzyrev  I. S.  Podval’naya  N. V.  Klingeler  R. 《Journal of Materials Science》2021,56(23):13227-13242

For the first time, ZnO/C composites were synthesized using zinc glycerolate as a precursor through one-step calcination under a nitrogen atmosphere. The effect of the heat treatment conditions on the structure, composition, morphology as well as on the electrochemical properties regarding application in lithium-ion batteries are investigated. The products obtained by calcination of the precursor in nitrogen at 400—800 °C consist of zinc oxide nanoparticles and amorphous carbon that is in-situ generated from organic components of the glycerolate precursor. When used as anode material for lithium-ion batteries, the as-prepared ZnO/C composite synthesized at a calcination temperature of 700 °C delivers initial discharge and charge capacities of 1061 and 671 mAh g?1 at a current rate of 100 mA g?1 and hence 1.5 times more than bare ZnO, which reaches only 749/439 mAh g?1. The native carbon improves the conductivity, allowing efficient electronic conductivity and Li-ion diffusion. By means of ex-situ XRD studies a two-step storage mechanism is proven.

  相似文献   

2.
Core–shell nanostructure electrode (TiO2@C) for oxygen reduction reaction is prepared with TiO2 nanoparticles at 900 °C in a methane atmosphere. The TiO2@C supported Pt catalyst (Pt/TiO2@C) contains Pt nanoparticles on TiO2@C nanostructure electrodes consisting of TiO2 as a core and carbon as a shell. In the accelerated stability test, the Pt/TiO2@C exhibits a superior ORR stability to conventional carbon supported Pt catalyst. It is likely that the enhanced catalytic properties of the nanostructure supported Pt catalyst may be due to graphite-like carbon and an improved electronic conductivity of the core–shell nanostructure.  相似文献   

3.
Anatase (TiO2) thin films were obtained by immersion of glass plates into a titanium sol-gel precursor followed by calcination at 450 °C for 3 h. The Raman results for the CO2 laser irradiated TiO2 films show that laser radiation is able to promote favorable changes of anatase phase in anatase/rutile mixtures. Nevertheless, the transformation process level depends on laser characteristics and scan speed of the radiation treatment.  相似文献   

4.
TiO2 nanotubes were synthesized by the decomposition of titanium isopropoxide in water and the calcination at 450 °C for 2 h to form TiO2 nanoparticles. The synthesized TiO2 in anatase form nanoparticles were processed hydrothermally in 10 M NaOH solution at 130 °C for 24 h to obtain multilayer TiO2 nanotubes. TEM analysis revealed that the diameters of the tubes were around 10 nm and they are in the length of 100 nm. Subsequently, colloidal suspensions containing 1% wt. Of TiO2 nanotubes were prepared with TEA and butanol and electrophoretic deposition (EPD) experiments were conducted in order to obtain coatings on Ni and carbon filters using a deposition time of 10 min. and an applied voltage of 65 V. It is also shown that multilayer TiO2 nanotubes having outer diameter around 10 nm and inner diameters of 4.3 nm can be produced using the described technique. EPD is also shown to be an effective technique to coat three dimensional components, such as Ni and C filters for various applications including water and air purification systems.  相似文献   

5.
In this study, the thermal conductivity and viscosity of TiO2 nanoparticles in deionized water were investigated up to a volume fraction of 3% of particles. The nanofluid was prepared by dispersing TiO2 nanoparticles in deionized water by using ultrasonic equipment. The mean diameter of TiO2 nanoparticles was 21 nm. While the thermal conductivity of nanofluids has been measured in general using conventional techniques such as the transient hot-wire method, this work presents the application of the 3ω method for measuring the thermal conductivity. The 3ω method was validated by measuring the thermal conductivity of pure fluids (water, methanol, ethanol, and ethylene glycol), yielding accurate values within 2%. Following this validation, the effective thermal conductivity of TiO2 nanoparticles in deionized water was measured at temperatures of 13 °C, 23 °C, 40 °C, and 55 °C. The experimental results showed that the thermal conductivity increases with an increase of particle volume fraction, and the enhancement was observed to be 7.4% over the base fluid for a nanofluid with 3% volume fraction of TiO2 nanoparticles at 13 °C. The increase in viscosity with the increase of particle volume fraction was much more than predicted by the Einstein model. From this research, it seems that the increase in the nanofluid viscosity is larger than the enhancement in the thermal conductivity.  相似文献   

6.
Anatase type TiO2 nanotubes were formed by calcination of poly(vinyl alcohol)-Ti alkoxide hybrid precursor nanofibers in air. The outer and inner diameters of the TiO2 nanotubes calcined at 500 °C for 5 h were ca. 440 nm and ca. 270 nm, respectively. The specific surface area of the TiO2 nanotubes was 38.8 m2/g, and the existence of mesopores (average pore diameter, 14.8 nm) on the nanotube wall was indicated by the nitrogen adsorption isotherm (−196 °C). The photocatalysis of the TiO2 nanotubes was superior to that of commercially available anatase type TiO2 nanoparticles.  相似文献   

7.
Titanium oxide (TiO2) is one of the most widely studied materials due to its fascinating properties and versatile applications in environmental and energy fields ranging from photocatalysis to solar cells and lithium ion batteries. The significance and variety of these applications have attracted great attention and spurred substantial progress in the synthesis and fundamental understanding of TiO2-based nanomaterials, nanocomposites, and nanoderivatives. This review summarizes the recent advances in the design and preparation of TiO2-based nanomaterials, nanocomposites, and nanoderivatives obtained from titanium glycolate precursor. Utilizing different fabrication strategies, titanium glycolate precursor with controllable morphology and size has been successfully produced, and it can be directly transformed into crystalline TiO2 nanomaterials through diverse post-treatments, including calcination thermal-decomposition, and refluxing, hydrothermal, and microwave treatment-assisted hydrolysis. Furthermore, doped TiO2, TiO2-composites, and other derivatives could be simply achieved by adding additional chemicals during transformation. The favorable properties of the resulting TiO2-based materials are also discussed, which are relevant to energy and environmental applications in the areas of dye-sensitized solar cells, lithium ion batteries, photocatalytic hydrogen evolution, photocatalytic CO2 reduction, photocatalytic degradation, and adsorption removal of pollutants.  相似文献   

8.
In this paper, TiO2 nanoparticles were synthesized via sol–gel method by using of TiCl4 as a precursor in the ethanol solution. The structure and the morphology of TiO2 nanoparticles were characterized by X-ray diffraction and scanning electron microscopy. We have studied the optical properties by using of UV–Vis spectroscopy. The results show that the calcination temperature is an important factor in size of nanoparticles, the morphology of powders and the band gap energy of TiO2 nanoparticles. Also, rapid cooling time of samples is an important factor to decrease band gap energies, considerably. The calculated band gap of the TiO2 nanoparticles is in range of 2.39–3.50 eV.  相似文献   

9.
SrxBa1-xNb2O6 (with x = 0.4, 0.5 and 0.6) powders have been prepared by thermolysis of aqueous precursor solutions consisting of triethanolamine (TEA), niobium tartarate and, EDTA complexes of strontium and barium ions. Complete evaporation of the precursor solution by heating at ∼ 200°C, yields in a fluffy, mesoporous carbon rich precursor material, which on calcination at 750°C/2 h has resulted in the pure SBN powders. The crystallite and average particle sizes are found to be around 15 nm and 20 nm, respectively.  相似文献   

10.
Ag doped TiO2 nanofibers were fabricated by electrospinning technique using polyvinyl pyrrolidone (PVP) and titanium isopropoxide (TiP) as precursor. The effects of silver and calcination temperature on the preparation of electrospun TiO2 nanofibers were investigated. The calcination temperature determines the TiO2 phases as ether anatase or rutile. When the calcination temperature increased, crystallite size of TiO2 nanofiber increased. The crystallite size of Ag doped TiO2 nanofiber is smaller than that of the pure TiO2 nanofiber because silver is retrained in this phase transformation. Silver controlled the phase transformation as well as had an inhibition effect on the growth of anatase crystallite.  相似文献   

11.
Photocatalytic properties of porous TiO2/Ag thin films   总被引:1,自引:0,他引:1  
In this study, nanocrystalline TiO2/Ag composite thin films were prepared by a sol-gel spin-coating technique. By introducing polystyrene (PS) spheres into the precursor solution, porous TiO2/Ag thin films were prepared after calcination at a temperature of 500 °C for 4 h. Three different sizes (50, 200, and 400 nm) of PS spheres were used to prepare porous TiO2 films. The as-prepared TiO2 and TiO2/Ag thin films were characterized by X-ray diffractometry (XRD) and by scanning electron microscopy to reveal structural and morphological differences. In addition, the photocatalytic properties of these films were investigated by degrading methylene blue under UV irradiation.When PS spheres of different sizes were introduced after calcination, the as-prepared TiO2 films exhibited different porous structures. XRD results showed that all TiO2/Ag films exhibited a major anatase phase. The photodegradation of porous TiO2 thin films prepared with 200 nm PS spheres and doped with 1 mol% Ag exhibited the best photocatalytic efficiency where ∼ 100% methylene blue was decomposed within 8 h under UV exposure.  相似文献   

12.
TiO2 powders were prepared through the hydrolysis of titanium isopropoxide followed by calcination at temperatures of 200 °C to 600 °C. The obtained powders were characterized by N2 adsorption-desorption and X-ray powder diffraction. The results confirmed strong dependence between specific surface area of the TiO2 powders and both the conditions of the hydrolysis process and the calcination temperature. While calcination temperature strongly affected crystallinity of the product, no significant influence of the hydrolysis conditions on this parameter was observed. TiO2 powders prepared at various conditions were examined as catalysts for photodegradation of Acid Red 18 in water. Photoactivities of the prepared powders were influenced by both the amount of water used to hydrolyze the TiO2 precursor and the temperature of calcination process. TiO2 samples calcined at 500 °C appeared to be the most active and the photocatalytic activities of the prepared materials increased along with the amount of water used for the hydrolysis process.  相似文献   

13.
By the magnetically modulated microwave absorption method (MAMMA) we observed the modifications induced by different calcination temperatures (between 830°C and 870°C) on the 2223 phase formed in a system sintered at (855±5)°C with the starting composition Bi1.7Pb0.3Sr2Ca2Cu3O y . The presence of the 2223 phase in almost distinct states (consequently, multiple 2223 phases) in the same sample was observed. As the calcination temperature was increased up to 850°C, the highest temperature state of the 2223 phase intensified. Higher calcination temperatures resulted in the enhancement of other lower-temperature states. The homogeneity of the 2223 phase was greatly improved by annealing the samples at, 800°C for 5 min in a flowing nitrogen atmosphere. We labeled as metastable the lower-temperature states having excess oxygen, which, by easily losing the supplementary oxygen under the above annealing procedure, were shifted to higher temperatures.  相似文献   

14.
Synthesis and photocatalytic oxidation properties of titania hollow spheres   总被引:2,自引:0,他引:2  
The hollow spheres of anatase TiO2 with higher photocatalytic activity have been fabricated by spherical CaCO3 nanoparticles as a template, and titanium sulfate (Ti(SO4)2) as a precursor, and the CaCO3 templates were dissolved subsequently in dilute HNO3 solution. The TiO2 hollow spheres samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and N2 adsorption-desorption isotherms. The characterization results indicate that as prepared TiO2 hollow spheres sample was transformed to anatase phase in calcined at 400 °C, and the anatase TiO2 hollow spheres have a higher specific surface area and show much better photocatalytic activity than commercial P25 in the photodegradation of Rhodamine B under the UV irradiation.  相似文献   

15.
Metal organic frameworks (MOFs)‐derived porous carbon is proposed as a promising candidate to develop novel, tailorable structures as polysulfides immobilizers for lithium–sulfur batteries because of their high‐efficiency electron conductive networks, open ion channels, and abundant central ions that can store a large amount of sulfur and trap the easily soluble polysulfides. However, most central ions in MOFs‐derived carbon framework are encapsulated in the carbon matrix so that their exposures as active sites to adsorb polysulfides are limited. To resolve this issue, highly dispersed TiO2 nanoparticles are anchored into the cobalt‐containing carbon polyhedras that are converted from ZIF‐67. Such a type of TiO2 and Co nanoparticles‐decorated carbon polyhedras (C? Co/TiO2) provide more exposed active sites and much stronger chemical trapping for polysulfides, hence improving the sulfur utilization and enhancing reaction kinetics of sulfur‐containing cathode simultaneously. The sulfur‐containing carbon polyhedras decorated with TiO2 nanoparticles (S@C? Co/TiO2) show a significantly improved cycling stability and rate capability, and deliver a discharge capacity of 32.9% higher than that of TiO2‐free S@C? Co cathode at 837.5 mA g?1 after 200 cycles.  相似文献   

16.
Changing the composition and/or structure of some metal oxides at the atomic level can significantly improve their performance in different applications. Although many strategies have been developed, the introduction of heteroatoms, particularly anions to the internal part of metal oxide particles, is still not adequate. Here, an effective strategy is demonstrated for directly preparing polycrystalline decahedral plates of substitutional carbon‐doped anatase TiO2 from titanium (IV) oxalate by a thermally induced topotactic transition in an inert atmosphere. Because of the carbon concentration gradient introduced in side of the plates, the carbon‐doped TiO2 (TiO2–xCx) shows an increased visible light absorption and a two orders of magnitude higher electrical conductivity than pure TiO2. Consequently, it can be used as a photocatalyst and an active material for lithium storage and shows much superior activity in generating hydroxyl radicals under visible light and greatly increased electrical‐specific capacity at high charge–discharge rates. The strategy developed could also be applicable to the atomic‐scale modification of other metal oxides.  相似文献   

17.
High-temperature treatment of functional nanomaterials, through postsynthesis calcination, often represents an important step to unlock their full potential. However, such calcination steps usually severely limit the preparation of colloidal solutions of the nanoparticles due to the formation of sintered agglomerates. Herein, a simple route is reported to obtain colloidal solutions of calcined n-conductive antimony doped tin oxide (ATO) as well as titanium dioxide (TiO2) nanoparticles without the need for additional sacrificial materials. This is achieved by making use of the reduced contact between individual nanoparticles when they are assembled into aerogels. Following the calcination of the aerogels at 500 °C, redispersion of the nanoparticles into stable colloidal solutions with various solvents can be achieved. Although a slight degree of sintering is inevitable, the size of the resulting aggregates in solution is still remarkably small with values below 30 nm.  相似文献   

18.
Nanosized TiO2 powder with anatase structure was synthesized by a sol-gel method using TiCl4 ethanol solution as a precursor. The grain size of TiO2 powder was homogenous and was about 10 nm after the precursor was calcined at 500 °C for 1 hour. Anatase TiO2 powder formed after the precursor was calcined at a temperature ranging from 300 °C to 550 °C. The gelatinizing mechanism of TiCl4 in ethanol solution can be described as followings. When mixed with ethanol, TiCl4 reacted with ethanol to form TiCl x (OCH2CH3)4 – x species and HCl gas. During gelatinizing process, TiCl x (OCH2CH3)4 – x species absorbed water from atmosphere to form Ti(OH)4 precursor, which was polymerized to be an inorganic polymer. The formation of inorganic polymer of Ti(OH)4 was intensified with gelatinizing time. In contrast, the organic component was removed from the precursor. The formation of anatase TiO2 can also be promoted by increasing gelatinizing time. The influence of alcohol on the reacting progress and dispersivity was also studied. The size and activity of alcohol molecule were found to have influence on the polymerization and mineralization degree of the precursor and the dispersivity of TiO2 powders.  相似文献   

19.
Photocatalytic degradation under visible light irradiation is an important task of using solar energy for the removal of environmental pollutants. N-F/TiO2 nanoparticles were synthesized in one-pot sol–gel condition using tetra-isopropyl-orthotitanate as the TiO2 precursor and NH4F as the N-F doping source. Diffuse reflectance spectroscopy (DRS) analysis of the material has shown a reduction of band gap energy and shifting absorption edge to the visible wavelengths. A fluidized-spouted bed reactor equipped with the light source was designed and constructed for the oxidation process of VOC from the high airflow rate under Hg lamp irradiation using synthesized N-F/TiO2 nanoparticles. Acetaldehyde was used as the air pollutant model molecule of VOC in this process. The effluent acetaldehyde concentration was analyzed continuously along the time by an online Gas Chromatography (GC) from the start up to reaching steady conditions. The results have revealed significant enhancement of acetaldehyde removal by the N-F/TiO2 sample fabricated with an equal weight ratio of NH4F/Ti. After steady conditions, almost 100% removal of acetaldehyde was observed in the spouted bed reactor from a high airflow stream of 5?L/min polluted with 1000?ppm acetaldehyde at room-temperature conditions, under 80?W Hg with 500 Lux intensity.  相似文献   

20.
SrTiO3 powder has been prepared from Sr-oxalate and TiO2 precursors, instead of using titanyl-oxalate. Sr-oxalate was precipitated from nitrate solution onto the surface of suspended TiO2 powders. Crystallization of SrTiO3 from the precursor was investigated by TGA, DTA and XRD analysis. It is evident that precursor, upon heating, dehydrates in two stages, may be due to the presence of two different types of Sr-oxalate hydrates. Dehydrated precursor then decomposes into SrCO3 and TiO2 mixture. Decomposition of SrCO3 and simultaneous SrTiO3 formation occur at much lower temperature, from 800 °C onwards, due to the fine particle size of the SrCO3 and presence of acidic TiO2 in the mixture. The precursor completely transforms into SrTiO3 at 1100 °C. About 90 nm size SrTiO3 crystallites are produced at 1100 °C/1 h, due to the lower calcination temperature and better homogeneity of the precursor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号