首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of a biologically activated carbon system for treating wastewater polluted with petroleum products was examined and the effects of process parameters on its efficacy were evaluated. In each experiment 17 alkylated and 19 non-alkylated polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPHs, C10–C40) were extracted using semipermeable membrane devices from wastewater before and after treatment. The acquired data during experiments were analyzed using principal component analysis (PCA). The treatment system robustly removed dissolved PAHs across the studied ranges of the process parameters, providing overall removal efficiencies of 96.9–99.7% for the sum of 36 PAHs. However, the major contributor to their removal was sorption rather than biodegradation, and despite the general efficiency of the process there was up to a 9-fold range in the sums of quantified PAHs in the effluents between experiments. Combinations of long process contact time (24 h) with high temperature (24 °C) and moderate oxygen concentration (6–7 mg O2 L−1) resulted in good removal of bioavailable PAHs. The removal of TPHs was more dependent on biological activities during the wastewater treatment, and consequently more dependent on the process parameters. In addition, small but significant proportions of PAHs were volatilized and released during the wastewater treatment.  相似文献   

2.
Ambient air and dry deposition samples were collected at suburban and urban sites in Izmir, Turkey. Atmospheric total (particle+gas) ∑(14)PAHs concentrations were 36±39 and 144±163 ng m(-3) for suburban and urban sites, respectively. Phenanthrene was the most abundant compound at all sites, and all samples were dominated by low molecular weight PAHs. Average particulate ∑(14)PAH dry deposition fluxes were 8160±5024 and 4286±2782 ng m(-2) day(-1) and overall average particulate dry deposition velocities were 1.5±2.4 and 1.0±2.3 cm s(-1) for suburban and urban sites, respectively. Soil samples were collected at suburban site. Average soil concentration for ∑(14)PAH was 55.9±14.4 ng g(-1) dry weight. Calculated gas-phase air-soil exchange fluxes indicated that fluorene, phenanthrene, anthracene, and carbazole were deposited to soil in winter while they were volatilized in summer. Other compounds (fluoranthene-benzo[g,h,i]perylene) were deposited to soil in both periods. Annual average fluxes of PAHs representing soil to air (i.e., gas volatilization) and air to soil transfer (i.e., gas absorption, dry deposition, and wet deposition) processes were also compared. All processes were comparable for Σ(14)PAHs however their input was dominated by gas absorption. Gas absorption dominated for lower molecular weight PAHs, however dry deposition dominated for higher molecular weight PAHs. The results have suggested that for fluorene, soil and air may be approaching a steady state condition. For the remaining compounds, there was a net accumulation into the soil.  相似文献   

3.
塑料食品包装制品中多环芳烃的分析及检测   总被引:2,自引:0,他引:2  
通过模拟向聚酯(PET)、聚碳酸酯(PC)两类包装材料中添加回收塑料,探索了塑料食品包装中多环芳烃(PAHs)的来源,并对样品中的PAHs进行分析检测.由新料加工制成的样品中不含PAHs;添加回收料的样品中出现了PAHs的累积与放大;添加回收料并引入氯源(PVC)的样品,经反复加工,其有害物质的含量增加,组分更趋复杂.结果表明,添加回收塑料的包装制品中含有大量有害物质,如萘、苊烯、苊等2~3环的多环芳烃.  相似文献   

4.
Sixteen priority polycyclic aromatic (PAHs) in PM(2.5) and PM(2.5-10) samples collected from 20 sites in Beijing, China in December 2005 and January 2006 were analyzed to determine the composition, spatial distribution and sources. Total PAHs of PM(2.5) and PM(2.5-10) ranged from 5.2 to 1062.2 ng m(-3) and 7.6 to 759.7 ng m(-3), respectively, categorized as heavier pollution. Among five kind of functional zones involved, industrial center, commercial area and village were heavily polluted. The mean concentration of PAHs in PM(2.5) of 407 ng m(-3) was 1.67-fold of that in PM(2.5-10), which was relatively high compared to the previous studies (winter in 2001 and 2002). The most evident change was the increase of Flu, BbkF and InP, which are believed to be less harmful and related to the increasing use of clean energy. However, pollution distribution was spatially heterogeneous inside the city. The most polluted sites located in the southeast of the city. Unlike previous studies, fluoranthene was the most abundant component quantified, which could be associated with increasing use of natural gas as clean energy. Compositional analysis and principal component analysis (PCA) suggested that different kinds of combustion were the main source of the PAHs in PM, though contribution of coal was still evident.  相似文献   

5.
Removal of PAHs from highly contaminated soil found at a manufactured gas site was evaluated using solvent washing with mixed solvents. The following solvents were considered as water miscible co-solvents in mixed solvents: ethanol, 2-propanol, acetone, and 1-pentanol. In batch solvent extraction of soil, ethanol and 2-propanol were selected as primary components of mixed solvents in addition to 1-pentanol. Using ternary solutions containing either ethanol or 2-propanol with a volume fraction of 1-pentanol ranging from 5 to 25% and a water volume fraction ranging from 5 to 30%, ethanol was more effective than 2-propanol in extracting PAHs from soil. A solvent mixture of 5% 1-pentanol, 10% water and 85% ethanol was selected as the extraction solvent. Using a 1 g:4 ml soil:solvent extraction ratio, extraction kinetics showed that from 65 to 90% of the extractable PAHs were removed within an hour of contact between soil and solvent. Using this 1 g:4 ml extraction ratio, PAHs were removed in a three-stage cross-current solvent washing process where the same batch of soil was extracted with clean solvent for 1 h in each stage. PAH removals in three-stage cross-current solvent washing were comparable to PAH removals obtained with Soxhlet extraction.  相似文献   

6.
The degradation of three- and four-ring polycyclic aromatic hydrocarbons (PAHs) in Kirk medium by Anthracophyllum discolor, a white-rot fungus isolated from the forest of southern Chile, was evaluated. In addition, the removal efficiency of three-, four- and five-ring PAHs in contaminated soil bioaugmented with A. discolor in the absence and presence of indigenous soil microorganisms was investigated. Production of lignin-degrading enzymes and PAH mineralization in the soil were also determined. A. discolor was able to degrade PAHs in Kirk medium with the highest removal occurring in a PAH mixture, suggesting synergistic effects between PAHs or possible cometabolism. A high removal capability for phenanthrene (62%), anthracene (73%), fluoranthene (54%), pyrene (60%) and benzo(a)pyrene (75%) was observed in autoclaved soil inoculated with A. discolor in the absence of indigenous microorganisms, associated with the production of manganese peroxidase (MnP). The metabolites found in the PAH degradation were anthraquinone, phthalic acid, 4-hydroxy-9-fluorenone, 9-fluorenone and 4,5-dihydropyrene. A. discolor was able to mineralize 9% of the phenanthrene. In non-autoclaved soil, the inoculation with A. discolor did not improve the removal efficiency of PAHs. Suitable conditions must be found to promote a successful fungal bioaugmentation in non-autoclaved soils.  相似文献   

7.
Organic–inorganic hybrid silica nanospheres were prepared through a biomimetic silicification process in water at ambient conditions by the interaction of low cost poly(ethylene imine) hyperbranched polymer with silicic acid. The characterization of these nanoparticles by FTIR spectroscopy, scanning electron microscopy (SEM), zeta-potential and dynamic light scattering (DLS) experiments confirmed that the dendritic polymer was incorporated into the silica network. Preliminary experiments show that these hybrid nanoparticles can be employed for the removal of toxic water contaminants. Hybrid nanospheres’ sorption of two completely different categories of pollutants, i.e. metal ions such as Pb2+, Cd2+, Hg2+, Cr2O72−, and polycyclic aromatic hydrocarbons such as pyrene and phenanthrene, was largely enhanced in comparison with the corresponding polymer-free silica nanospheres. This was attributed to the to the formation of conventional metal-ligand and charge-transfer complexes proving that although integrated into the silica network poly(ethylene imine) retains its chemical properties.  相似文献   

8.
采用同位素内标法并结合凝胶净化技术,建立了婴幼儿米粉中多环芳烃残留的气相色谱一质谱(GC-MS)检测方法。样品中的多环芳烃经乙腈提取,凝胶渗透色谱柱去除杂质后,进行GC-MS测定,内标法定量。方法的样品加标回收率和相对标准偏差分别为62.8%-93.7%、8.2%-21.0%。多环芳烃的方法检测限为0.3μg/kg-2.4μg/kg。  相似文献   

9.
利用微层共挤出技术制得不同层数(2,16,64层)的聚偏氟乙烯(PVDF)/聚甲基丙烯酸甲酯(PMMA)交替多层材料,通过偏光显微镜、垂直燃烧测试、热失重分析、红外光谱分析、微型量热测试研究了层数的变化对体系热分解和热释放行为的影响。结果表明,PVDF层与PMMA层沿层状样品的厚度方向交替排列,层结构明显,层界面清晰,随着层数的增加,层界面数增加,材料的垂直燃烧行为几乎不变,但表现出更高的热稳定性;高层数样品中热稳定性优异的PVDF层对易热解的PMMA层保护作用增强,且在热释放过程中,更多的层界面为PVDF炭层的形成提供了更丰富的空间,使材料的热释放速率减小,总热释放降低。  相似文献   

10.
以聚乙烯醇和间硝基苯甲醛为原料,对甲苯磺酸为催化剂,合成了聚乙烯醇缩间硝基苯甲醛(PVMNB),探讨了反应物物料比、反应温度、反应时间对PVMNB缩醛度的影响,获得适宜的工艺条件为:PVA(-OH)和间硝基苯甲醛的物质的量比为2:1,反应温度100℃,反应时间9 h,此时PVMNB为86%.通过衰减全反射-傅里叶红外光...  相似文献   

11.
Vertically aligned few layered graphene (FLG) nanoflakes were synthesised on silicon substrates by microwave plasma enhanced chemical vapour deposition (MPECVD) method. Transmission electron microscopy (TEM) shows that the structures have highly graphitized terminal planes of 1–3 layers of graphene. Raman spectroscopy revealed a narrow G band with a FWHM of ∼23 cm−1 accompanied by a strong G′ (2D) band, with a FWHM of ∼43 cm−1 and an IG/IG ratio of 1, which are all the characteristics of highly crystallized few layered graphene. The FLG electrodes demonstrate fast electron transfer (ET) kinetics for Fe(CN)63−/4− redox system with an electron transfer rate, ΔEp, of 60 mV. Platinum (Pt) nanoparticles of ∼6 nm diameter were deposited on as grown FLGs using magnetron DC sputtering for methanol oxidation studies. When used as electrodes for methanol oxidation, a mass specific peak current density of ∼62 mA mg−1 cm−2 of Pt is obtained with a high resistance to carbon monoxide (CO) poisoning as evident by a high value of 2.2 for the ratio of forward to backward anodic peak currents (If/Ib).  相似文献   

12.
A novel Fe(OH)3–polyacrylamide inorganic–organic hybrid polymer (FHPAM) was synthesized via free radical solution polymerization initiated by a redox initiation system ((NH4)2S2O8–NaHSO3) in an aqueous medium. Reaction parameters influencing the intrinsic viscosity and the yield of the hybrid polymer, such as initiator concentration, monomer mass fraction, temperature and reaction time were investigated and optimized. The results show that the maximum intrinsic viscosity and up to 94% yields of the hybrid polymer can be achieved using initiator concentration of 0.3% with acrylamide monomer mass fraction of 20% under solution polymerization at 40 °C for 7 h. The physicochemical properties of this hybrid flocculant were characterized with TEM, FTIR spectra, TGA, and conductivity. It was found that a chemical bond exists between Fe(OH)3 colloid and polyacrylamide chains in the FHPAM. The application of the hybrid polymer for the treatment of 2.5 g L−1 kaolin suspension indicates that it had an excellent flocculation capacity and its flocculation efficiency was much better than that of commercial available polyacrylamide (PAM) and polymeric ferric sulfate (PFS). The optimal conditions for the flocculation treatment of kaolin suspension were the FHPAM dosage of 40 mg L−1 at pH 7.0. The thermodynamic parameters for the flocculation process were calculated based on a statistical model. Interpretation of the results was given.  相似文献   

13.
Initiated chemical vapor deposition (iCVD) is a technique used to synthesize polymer thin films and coatings from the vapor phase in situ on solid substrates via free-radical mechanisms. It is a solventless, low-temperature process capable of forming very thin conformal layers on complex architectures. By implementing a combinatorial approach that examines five initiation temperatures simultaneously, we have realized at least a five-fold increase in efficiency. The combinatorial films were compared to a series of blanket films deposited over the same conditions to ensure the combinatorial system provided the same information. Direct synthesis from the vapor phase allows for in situ control of film morphology, molecular weight and crosslinking, and the combinatorial system decreases the time required to find the relationship between these interrelated properties. Some coatings were tested for antimicrobial performance against E. coli and B. subtilis.  相似文献   

14.
A transport reaction synthesis technique has been used to prepare single crystals of two pyroborate compounds having the formulas Cu2NiO(B2O5) and Cu2MgO(B2O5). The two compounds are isostructural and crystallize in the monoclinic space group P21/c. Cu2NiO(B2O5): a=3.2003(10), b=14.775(3), c=9.097(3), β=93.28(4), V=429.4(2) Å3, Z=4; and Cu2MgO(B2O5): a=3.2401(6), b=14.790(2), c=9.147(2), β=94.88(2), V=436.7(2) Å3, Z=4. The structures of Cu2NiO(B2O5) and Cu2MgO(B2O5) were, respectively, refined from 804 and 1000 independent reflections to the final residuals R1=0.0366, wR2=0.0911 and R1=0.0231, wR2=0.0644. Both compounds exhibit a chevron-like structure built up of ribbons, made of edge-connected copper and nickel-oxygen polyhedra, running along the (1 0 0) direction. These ribbons are connected from one another via oxygen atoms and the cohesion of the three-dimensional network is ensured by [B2O5] entities. Cu in part occupies the position for Ni or Mg, so that the compounds actually are solid solution compounds. Ni or Mg atoms are octahedrally coordinated by oxygen, while the two pure Cu sites show [4] and [4+1] coordination, for Cu(1) and Cu(2), respectively. The ELNES B-K edge spectra for the two compounds support that the borate group present is [B2O5].  相似文献   

15.
以聚乙烯醇(PVA)为成膜载体,由聚四氟乙烯(PTFE)分散乳液制得PTFE微孔膜,通过对不同烧结温度的研究得出PTFE烧结模型,在烧结初期有利于PTFE形成微孔结构.在成膜体系中引入纳米无机粒子,得到PTFE/无机粒子共混平板膜.研究了无机粒子对共混膜结构及性能的影响,结果表明PTFE与碳酸钙(CaCO_3)粒子的粘结性差,在烧结成型过程中PTFE基质相与CaCO_3产生界面相分离形成微孔,形成的界面微孔不同于PTFE双向拉伸产生的纤维-结点状裂隙孔结构.共混膜经适当拉伸后孔隙率显著提高.  相似文献   

16.
Ultrathin epitaxial layers of cerium oxide were prepared by oxidation of layers of an ordered Pt–Ce surface alloy on top of a Pt(111) single crystal. They consist of low-dimensional CeO2 islands. Atomically resolved scanning tunnel microscopy (STM) images indicate a surface structure of the fluorite-type CeO2(111) 1×1 phase and the presence of surface defects.  相似文献   

17.
18.
采用基于密度泛函理论的第一性原理研究了4H-SiC(001)定位掺杂Ni的磁性,结果表明相对于掺杂前表面悬挂键的存在使体系具有弱磁性,Ni定位取代Si位置后得到的体系更加稳定。对比分析了Ni定位取代不同数量的C与Si原子后,得出取代C原子比取代Si原子得到的磁矩大,而且奇数倍的取代较偶数倍取代得到的磁矩大。定位取代一个C与一个Si比单独取代一种原子得到的磁矩大,因此从稳定性与磁性方面考虑C与Si同时取代是最好的掺杂选择。在导电性方面,随着Ni掺杂原子数量增加光电导相应增加。  相似文献   

19.
为简化合成工艺、降低样品损耗,以丙酸作为添加剂,通过改变丙酸与九水硝酸铬浓度比,合成含有微-介孔分级结构的MIL-101(Cr)。利用X射线衍射仪、全自动比表面及孔隙度分析仪及扫描电子显微镜等表征手段对不同浓度比的MIL-101(Cr)的粒径、BET比表面积、孔体积、N_2吸附性能和微观结构进行研究。结果表明:选择适量的丙酸可以合成含有微-介孔分级结构的MIL-101(Cr),其具有更强的吸附性能。在该反应体系中,丙酸的浓度可以改变MIL-101(Cr)的结构,且合成方式简易方便,为拓展MIL-101(Cr)的应用提供可行的方案。  相似文献   

20.
Solid lipid nanoparticles (SLNs) have attracted increasing attention as colloidal drug carriers due to theirs advantages including low toxicity, drug targeting and modified release. However, undesired particle aggregation in aqueous dispersions would limit the applicability of SLNs for drug delivery. The purpose of the present article is to investigate the aggregation behavior of the SLNs and quantitatively evaluate how the concentration of NaCl and F68 affect the stability of the SLNs. The early stage aggregation kinetics of the SLNs was investigated over a wide range of NaCl concentrations by employing dynamic light scattering (DLS). In the presence of the NaCl, aggregation kinetics of the SLNs exhibited reaction-limited (slow) and diffusion-limited (fast) regimes. These results indicated that the aggregation behavior of these new nanoparticles can be well explained by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The critical coagulation concentration (CCC) of SLNs containing 0.0%, 0.1%, 0.5%, 2.0%, and 4.0% of Poloxamer 188 (F68) was 416, 328, 519, 607, and 602?mM, respectively, suggesting that the F68 influences the aggregation behavior of the SLNs. F68 made the SLNs more sensitive to the electrolyte when its concentration is low (0.1%), the bush of the polymer F68 has a bridging effect that accelerated the aggregation process of the SLNs. However, at the high concentration, F68 can provide the steric repulsion to the nanoparticles, which effectively stabilized the SLNs dispersions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号