首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2,4,5-Trihydroxytoluene (THT) oxygenase from Burkholderia sp. strain DNT catalyzes the conversion of THT to an unstable ring fission product. Biochemical and genetic studies of THT oxygenase were undertaken to elucidate the mechanism of the ring fission reaction. The THT oxygenase gene (dntD) was previously localized to the 1.2-kb DNA insert subcloned in the recombinant plasmid designated pJS76 (W. C. Suen and J. C. Spain, J. Bacteriol. 175:1831-1837, 1993). Analysis of the deduced amino acid sequence of DntD revealed the presence of the highly conserved residues characteristic of the catechol 2,3-dioxygenase gene family I. The deduced amino acid sequence of DntD corresponded to a molecular mass of 35 kDa. The native molecular masses for the THT oxygenase estimated by using gel filtration chromatography and nondenaturing gel electrophoresis were 67.4 and 77.8 kDa, respectively. The results suggested that the native protein consists of two identical subunits. The colorless protein contained 2 mol of iron per mol of protein. Stimulation of activity in the presence of ferrous iron and ascorbate suggested a requirement for ferrous iron in the active site. The properties of the enzyme are similar to those of the catechol 2,3-dioxygenases (meta-cleavage dioxygenases). In addition to THT, the enzyme exhibited activity towards 1,2,4-benzenetriol, catechol, 3- and 4-methylcatechol, and 3- and 4-chlorocatechol. The chemical analysis of the THT ring cleavage product showed that the product was 2, 4-dihydroxy-5-methyl-6-oxo-2,4-hexadienoic acid, consistent with extradiol ring fission of THT.  相似文献   

2.
Bacterial three-component dioxygenase systems consist of reductase and ferredoxin components which transfer electrons from NAD(P)H to a terminal oxygenase. In most cases, the oxygenase consists of two different subunits (alpha and beta). To assess the contributions of the alpha and beta subunits of the oxygenase to substrate specificity, hybrid dioxygenase enzymes were formed by coexpressing genes from two compatible plasmids in Escherichia coli. The activities of hybrid naphthalene and 2,4-dinitrotoluene dioxygenases containing four different beta subunits were tested with four substrates (indole, naphthalene, 2,4-dinitrotoluene, and 2-nitrotoluene). In the active hybrids, replacement of small subunits affected the rate of product formation but had no effect on the substrate range, regiospecificity, or enantiomeric purity of oxidation products with the substrates tested. These studies indicate that the small subunit of the oxygenase is essential for activity but does not play a major role in determining the specificity of these enzymes.  相似文献   

3.
4.
Pseudomonas sp. strain U2 was isolated from oil-contaminated soil in Venezuela by selective enrichment on naphthalene as the sole carbon source. The genes for naphthalene dioxygenase were cloned from the plasmid DNA of strain U2 on an 8.3-kb BamHI fragment. The genes for the naphthalene dioxygenase genes nagAa (for ferredoxin reductase), nagAb (for ferredoxin), and nagAc and nagAd (for the large and small subunits of dioxygenase, respectively) were located by Southern hybridizations and by nucleotide sequencing. The genes for nagB (for naphthalene cis-dihydrodiol dehydrogenase) and nagF (for salicylaldehyde dehydrogenase) were inferred from subclones by their biochemical activities. Between nagAa and nagAb were two open reading frames, homologs of which have also been identified in similar locations in two nitrotoluene-using strains (J. V. Parales, A. Kumar, R. E. Parales, and D. T. Gibson, Gene 181:57-61, 1996; W.-C. Suen, B. Haigler, and J. C. Spain, J. Bacteriol. 178:4926-4934, 1996) and a naphthalene-using strain (G. J. Zylstra, E. Kim, and A. K. Goyal, Genet. Eng. 19:257-269, 1997). Recombinant Escherichia coli strains with plasmids carrying this region were able to convert salicylate to gentisate, which was identified by a combination of gas chromatography-mass spectrometry and nuclear magnetic resonance. The first open reading frame, designated nagG, encodes a protein with characteristics of a Rieske-type iron-sulfur center homologous to the large subunits of dihydroxylating dioxygenases, and the second open reading frame, designated nagH, encodes a protein with limited homology to the small subunits of the same dioxygenases. Cloned together in E. coli, nagG, nagH, and nagAb, were able to convert salicylate (2-hydroxybenzoate) into gentisate (2,5-dihydroxybenzoate) and therefore encode a salicylate 5-hydroxylase activity. Single-gene knockouts of nagG, nagH, and nagAb demonstrated their functional roles in the formation of gentisate. It is proposed that NagG and NagH are structural subunits of salicylate 5-hydroxylase linked to an electron transport chain consisting of NagAb and NagAa, although E. coli appears to be able to partially substitute for the latter. This constitutes a novel mechanism for monohydroxylation of the aromatic ring. Salicylate hydroxylase and catechol 2,3-dioxygenase in strain U2 could not be detected either by enzyme assay or by Southern hybridization. However growth on both naphthalene and salicylate caused induction of gentisate 1,2-dioxygenase, confirming this route for salicylate catabolism in strain U2. Sequence comparisons suggest that the novel gene order nagAa-nagG-nagH-nagAb-nagAc-nagAd-++ +nagB-nagF represents the archetype for naphthalene strains which use the gentisate pathway rather than the meta cleavage pathway of catechol.  相似文献   

5.
An intracellular novel lipase which can hydrolyze t-butyl octanoate (TBO) was purified to homogeneity from crude cell-free extracts of Burkholderia (formerly Pseudomonas) sp. YY62 with 9% overall yield. Seventy-four-fold purification was achieved by ammonium-sulfate precipitation, three consecutive open-column chromatographies (DEAE anion-exchange, Sepharose CL-6B gel-filtration, and the second DEAE anion-exchange columns), and two HPLCs (TSK G2000SWXL gel-filtration and phenyl 5PW hydrophobic interaction columns). Enzymes hydrolyzing p-nitrophenyl acetate were separated into two peaks (peak I and II) on the hydrophobic HPLC, and only peak II was found to have TBO-hydrolyzing activity. The peak preparation showed a single band of 40 kDa on SDS-PAGE and a molecular mass of 39 kDa on gel-filtration under non-denatured conditions, indicating the monomeric nature of the TBO-hydrolyzing lipase. The lipase showed maximum activity at pH 7.0 and 28 degrees C. The N-terminal 15 amino acid residues were determined as Met-Asp-Phe-Tyr-Asp-Ala-Asn-Glu-Thr-Arg-His-Pro-Glu-Gln-Arg, which showed no homology to known proteins, suggesting that the purified enzyme may belong to a novel class of hydrolase.  相似文献   

6.
A study of the clinical, radiological, and pathological correlations in 43 patients with solitary cysticercus granuloma and epilepsy focused on factors that might help in predicting the presence of the parasite in the granuloma and those that might influence the formation of oedema around the granuloma. The duration of symptoms (< six months and > or = six months) and CT morphology of the granuloma (ring and disc, type A; nodular lesion, type B) were studied as factors that could possibly predict the presence of the parasite in the granuloma. The influence of sex of the patient and the presence of a neutrophilic response in the granuloma on the intensity of oedema around the lesion as seen on CT was also studied. The pathological features were studied in the excised granulomas. The intact or degenerated form of the cysticercus was evident in 22 of 43 specimens. Neither the duration of seizures (P = 0.17) nor the type of lesion on CT (P = 0.16) was predictive of the presence of the parasite in the granuloma. The sex of the patient (P = 0.51) and the neutrophilic response in the specimen (P = 0.73) did not correlate with the degree of oedema on CT indicating that neither of these host factors was a major determinant of oedema production. The findings point to the varied and unpredictable natural history of solitary cysticercus granulomas and the complex nature of host-parasite interactions in individual patients. The inability to predict the presence of the parasite in the granuloma on the basis of the clinical or radiological features precludes a selection of patients with such lesions for cysticidal drug treatment.  相似文献   

7.
8.
9.
The chlorobenzene degradation pathway of Pseudomonas sp. strain P51 is an evolutionary novelty. The first enzymes of the pathway, the chlorobenzene dioxygenase and the cis-chlorobenzene dihydrodiol dehydrogenase, are encoded on a plasmid-located transposon Tn5280. Chlorobenzene dioxygenase is a four-protein complex, formed by the gene products of tcbAa for the large subunit of the terminal oxygenase, tcbAb for the small subunit, tcbAc for the ferredoxin, and tcbAd for the NADH reductase. Directly downstream of tcbAd is the gene for the cis-chlorobenzene dihydrodiol dehydrogenase, tcbB. Homology comparisons indicated that these genes and gene products are most closely related to those for toluene (todC1C2BAD) and benzene degradation (bedC1C2BA and bnzABCD) and distantly to those for biphenyl, naphthalene, and benzoate degradation. Similar to the tod-encoded enzymes, chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase were capable of oxidizing 1,2-dichlorobenzene, toluene, naphthalene, and biphenyl, but not benzoate, to the corresponding dihydrodiol and dihydroxy intermediates. These data strongly suggest that the chlorobenzene dioxygenase and dehydrogenase originated from a toluene or benzene degradation pathway, probably by horizontal gene transfer. This evolutionary event left its traces as short gene fragments directly outside the tcbAB coding regions.  相似文献   

10.
11.
beta-N-Acetylglucosaminidase (EC 3.2.1.30) was purified from the outer membrane of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (GlcNAcase A) was purified by successive column chromatographies. The purified enzyme was found to be homogeneous on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular mass and pI of GlcNAcase A were 92kDa and 4.9, respectively. The optimum pH and temperature were 6.0-7.0 and 45 degrees C, respectively. GlcNAcase A was stable up to 40 degrees C at pH 7.0, and hydrolyzed N-acetylchitooligosaccharides from dimer to hexamer. The amino-terminal 16 amino acid residues of GlcNAcase A were sequenced.  相似文献   

12.
The complete amino acid sequence of transglutaminase (EC 2.3.2.13) (TGase), which is produced by a microorganism, Streptoverticillium sp. strain s-8112, and catalyzes the acyl transfer reaction between gamma-carboxyamide groups of glutamine residues in proteins and various primary amines, has been established by a combination of fast atom bombardment mass spectrometry and standard Edman degradation of peptide fragments produced by treatment of the TGase with various proteolytic enzymes and purified by a reversed-phase high performance liquid chromatography. The TGase consists of 331 amino acid residues with a chemical molecular weight of 37,863, in agreement with the observed molecular weight (37,869.2 +/- 8.8) determined from its electrospray ionization mass spectrum. The sequence of the enzyme is very different from those of mammalian TGases represented by guinea pig liver enzyme. The enzyme contains a sole Cys residue, which is essential for its catalytic activity. Hydropathy analysis indicated that the secondary structure of the region around the active site Cys residue is similar to those of mammalian TGases. These results suggest that this microbial protein evolved by a different pathway from that of mammalian TGases and acquired acyl transfer activity during the evolutional process.  相似文献   

13.
We performed an integrated genotypic and phenotypic analysis of 128 strains of the genera Burkholderia, Ralstonia, and Pseudomonas in order to study the taxonomic structure of Burkholderia cepacia and its relationships with other Burkholderia species. Our data show that presumed B. cepacia strains isolated from cystic fibrosis patients belong to at least five distinct genomic species, one of which was identified as Burkholderia vietnamiensis. This group of five phenotypically similar species is referred to as the B. cepacia complex. The name Burkholderia multivorans is proposed for one of these genomic species, which was formerly referred to as B. cepacia genomovar II; the remaining B. cepacia groups are referred to as genomovars I, III, and IV, pending additional differential phenotypic tests. The role and pathogenic potential of each of these taxa, particularly in view of the potentially fatal infections in cystic fibrosis patients, need further evaluation. The data presented also demonstrate that Pseudomonas glathei and Pseudomonas pyrrocinia should be reclassified as Burkholderia species.  相似文献   

14.
C-fiber sensory afferent neurons, which contain neuropeptides such as calcitonin-gene related peptide and substance P, mediate a wide variety of physiologic responses, including chemogenic pain, thermoregulation, and neurogenic inflammation. Capsaicin, the pungent constituent in red pepper, functions to activate and then, at higher doses and longer times, desensitize this class of neurons. This latter response provides the basis for the therapeutic application of capsaicin. A major advance in the field has been the identification of resiniferatoxin, a phorbol-related diterpene, as an analog of capsaicin that is ultrapotent but with differential selectivity. In particular, resiniferatoxin is only similar in potency for induction of pain but is much more effective for desensitization. Structure-activity analysis in whole animal experiments provides further evidence for dissociation of biologic endpoints, strongly arguing for the existence of vanilloid receptor subclasses. Using resiniferatoxin, we have been able to define specific, high-affinity receptors for capsaicin both in animal models such as rats and in man. Of great importance, the pharmacologic characterization in cultured dorsal root ganglion cells of the high-affinity resiniferatoxin-binding site and of the physiologic response believed to be directly coupled to the receptor, viz. calcium uptake, differed in structure-activity and in cooperativity. We conclude that multiple high-affinity vanilloid receptor subclasses mediate vanilloid response; moreover, the resiniferatoxin-selective subclass of vanilloid receptors is not the voltage-independent, cation-nonselective ion channel as previously believed. Optimization of ligands for the individual vanilloid receptor subclasses should revolutionize this therapeutic area.  相似文献   

15.
Novel information on the structure and function of chitosanase, which hydrolyzes the beta-1,4-glycosidic linkage of chitosan, has accumulated in recent years. The cloning of the chitosanase gene from Streptomyces sp. strain N174 and the establishment of an efficient expression system using Streptomyces lividans TK24 have contributed to these advances. Amino acid sequence comparisons of the chitosanases that have been sequenced to date revealed a significant homology in the N-terminal module. From energy minimization based on the X-ray crystal structure of Streptomyces sp. strain N174 chitosanase, the substrate binding cleft of this enzyme was estimated to be composed of six monosaccharide binding subsites. The hydrolytic reaction takes place at the center of the binding cleft with an inverting mechanism. Site-directed mutagenesis of the carboxylic amino acid residues that are conserved revealed that Glu-22 and Asp-40 are the catalytic residues. The tryptophan residues in the chitosanase do not participate directly in the substrate binding but stabilize the protein structure by interacting with hydrophobic and carboxylic side chains of the other amino acid residues. Structural and functional similarities were found between chitosanase, barley chitinase, bacteriophage T4 lysozyme, and goose egg white lysozyme, even though these proteins share no sequence similarities. This information can be helpful for the design of new chitinolytic enzymes that can be applied to carbohydrate engineering, biological control of phytopathogens, and other fields including chitinous polysaccharide degradation.  相似文献   

16.
A site-specific endonuclease which recognizes the sequence 5'-CCTNAGG-3' was purified to homogeneity from the thermophilic strain Bacillus sp. R7. The endonuclease (BspR7I) is monomeric protein with an apparent molecular weight of 37 kD. The enzyme is active over a wide range of NaCl concentrations, pH, and temperatures. BspR7I cleaves DNA substrates according to the scheme: 5'-CC decreases TNAGG-3' 3'-GGANT increases CC-5', hence the endonuclease represents an isoschizomer of Bsu361.  相似文献   

17.
A region of the genome of the filamentous, nitrogen-fixing, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 that contains a cluster of genes involved in nitrate assimilation has been identified. The genes nir, encoding nitrite reductase, and nrtABC, encoding elements of a nitrate permease, have been cloned. Insertion of a gene cassette into the nir-nrtA region impaired expression of narB, the nitrate reductase structural gene which together with nrtD is found downstream from nrtC in the gene cluster. This indicates that the nir-nrtABCD-narB genes are cotranscribed, thus constituting an operon. Expression of the nir operon in strain PCC 7120 is subjected to ammonium-promoted repression and takes place from an NtcA-activated promoter located 460 bp upstream from the start of the nir gene. In the absence of ammonium, cellular levels of the products of the nir operon are higher in the presence of nitrate than in the absence of combined nitrogen.  相似文献   

18.
Species-specific sequences were identified within the V4 variable region of 16S rRNA of two bacterial species capable of aromatic hydrocarbon metabolism, Pseudomonas putida F1 and Burkholderia sp. strain JS150, and a third, Bacillus subtilis ATCC 7003, that can function as a secondary degrader. Fluorescent in situ hybridization (FISH) with species-specific oligonucleotides was used for direct counting of these species throughout a phenol biodegradation experiment in batch culture. Traditional differential plate counting methods could not be used due to the similar metabolism and interactions of the primary degraders and difficulties in selecting secondary degraders in mixed culture. In contrast, the FISH method provided reliable quantitative results without interference from those factors.  相似文献   

19.
A Mycobacterium sp., strain KR2 which was able to utilise pyrene as sole source of carbon and energy was isolated from a polycyclic aromatic hydrocarbon (PAH) contaminated soil originating from the area of a former gaswork plant. The isolate metabolised up to 60% of the pyrene added (0.5 mg/mL) within 8 days at 20 degrees C. Cis-4,5-pyrene dihydrodiol, 4,5-phenanthrene dicarboxylic acid, 1-hydroxy-2-naphthoic acid, 2-carboxybenzaldehyde, phthalic acid, and protocatechuic acid were identified as degradation products. Based on these findings a degradation pathway for pyrene is suggested which is in good accordance with the data published so far on bacterial pyrene metabolism.  相似文献   

20.
Pseudomonas sp. strain ADP metabolizes atrazine to carbon dioxide and ammonia via the intermediate hydroxyatrazine. The genetic potential to produce hydroxyatrazine was previously attributed to a 1.9-kb AvaI DNA fragment from strain ADP (M. L. de Souza, L. P. Wackett, K. L. Boundy-Mills, R. T. Mandelbaum, and M. J. Sadowsky, Appl. Environ. Microbiol. 61:3373-3378, 1995). In this study, sequence analysis of the 1.9-kb AvaI fragment indicated that a single open reading frame, atzA, encoded an activity transforming atrazine to hydroxyatrazine. The open reading frame for the chlorohydrolase was determined by sequencing to be 1,419 nucleotides and encodes a 473-amino-acid protein with a predicted subunit molecular weight of 52,421. The deduced amino acid sequence matched the first 10 amino acids determined by protein microsequencing. The protein AtzA was purified to homogeneity by ammonium sulfate precipitation and anion-exchange chromatography. The subunit and holoenzyme molecular weights were 60,000 and 245,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography, respectively. The purified enzyme in H2(18)O yielded [18O]hydroxyatrazine, indicating that AtzA is a chlorohydrolase and not an oxygenase. The most related protein sequence in GenBank was that of TrzA, 41% identity, from Rhodococcus corallinus NRRL B-15444R. TrzA catalyzes the deamination of melamine and the dechlorination of deethylatrazine and desisopropylatrazine but is not active with atrazine. AtzA catalyzes the dechlorination of atrazine, simazine, and desethylatrazine but is not active with melamine, terbutylazine, or desethyldesisopropylatrazine. Our results indicate that AtzA is a novel atrazine-dechlorinating enzyme with fairly restricted substrate specificity and contributes to the microbial hydrolysis of atrazine to hydroxyatrazine in soils and groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号