首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The early development of focal ischemia after permanent occlusion of the right middle cerebral artery (MCA) was studied in six rats using interleaved measurements by diffusion-weighted NMR imaging (DWI) of water and two variants of proton spectroscopic imaging (SI), multiecho SI (TE: 136, 272, 408 ms) and short TE SI (TE: 20 ms). Measurements on a 4.7-T NMR imaging system were performed between the control phase and approximately 6 h postocclusion. In the center of the ischemic lesion of all rats, the apparent diffusion coefficient (ADC) decreased rapidly to 84.4 +/- 4.2% (mean +/- SD) of the control values approximately 2 min postocclusion. Approximately 6 h postocclusion, the ADC was reduced to 67.1 +/- 5.9%. In contrast, large differences between the animals were observed for the temporal increase of lactate (Lac) in the ipsilateral hemisphere. The maximum Lac signal was reached in four rats after 0.5-1.5 h, and in two rats was not reached even after 6 h postocclusion. Six h postocclusion, SI spectra measured at a TE of 136 ms revealed a decrease in the CH3 signal of N-acetylaspartate (NAA) to 67 +/- 13% of the control values. Differences were observed between the spatial regions of decreased NAA and increased Lac. In the lesions, a T2 relaxation time of Lac of 292 +/- 40 ms, considering a J-coupling constant of 6.9 Hz, was measured. Furthermore, a prolongation of the T2 of the CH3 signal of creatine/phosphocreatine (Cr/PCr) was observed in the lesion, from 163 +/- 22 ms during control to 211 +/- 41 ms approximately 6 h postocclusion. The experiments proved that DWI and proton SI are valuable tools to provide complementary information on processes associated with brain infarcts.  相似文献   

2.
Previous spectroscopic imaging studies of temporal lobe epilepsy have used comparisons of metabolite content or ratios to lateralize the seizure focus. Although highly successful, these studies have shown significant variations within each of the groups of healthy subjects and patients. This variation may arise from the natural differences seen in metabolite concentration in gray and white matter, the complex anatomy seen about the hippocampus, and the large voxels typically employed at 1.5 T. Using a 4.1 T whole body system, we have acquired spectroscopic images with 0.5 cc nominal voxels (1 cc after filtering) to evaluate the regional variation in metabolite content of the hippocampus, temporal gray and white matter, midbrain, and cerebellar vermis. Using a threshold value of 0.90 for CR/NAA, a value 90% of all normal hippocampal voxels lay below, we have correctly identified the presence of epileptogenic tissue in patients with unilateral as well as bilateral seizures. By using comparisons to healthy values of the CR/NAA ratio, this method enables the visualization of bilateral disease and provides information on the extent of gray matter involvement.  相似文献   

3.
PURPOSE: To determine the values for relaxation times in human brain for magnetic resonance (MR) imaging at 4 T. MATERIALS AND METHODS: T1 measurements were made with a progressive saturation sequence, an implementation of the Look-Locker sequence, and an inversion-recovery (IR) interleaved echo-planar imaging (IEPI) sequence. T2 measurements were made with a standard spin-echo (SE) sequence and an SE IEPI sequence. RESULTS: The T1 measurements yielded values of 1,724 msec +/- 51 for gray matter, 1,043 msec +/- 27 for white matter, and 4,550 msec +/- 800 msec for cerebrospinal fluid. The deep gray matter regions had T1 values of 1,458 +/- 38 (caudate nucleus) and 1,372 +/- 60 (putamen). The T2 measurements yielded results of 63 msec +/- 6.2 for gray matter and 49.8 msec +/- 2.2 for white matter. CONCLUSION: The T1 values measured at 4 T show a higher value than predicted from extrapolation at lower field strengths. The T2 measurements showed a slight decrease in values over those measured at lower-field strength. The gain in signal-to-noise ratio from the higher field strength may be substantially offset by these altered relaxation time values to a degree that is sequence dependent.  相似文献   

4.
The aim of the present investigation was to determine spin lock (SL) relaxation parameters for the normal brain tissues and thus, to provide basis for optimizing the imaging contrast at 0.1 T. 68 healthy volunteers were included. On-resonance spin lock relaxation time (T1rho) and off-resonance spin lock relaxation parameters (T1rho(off), Me/Mo), MT parameters (T1sat, Ms/Mo), and T1, T2 were determined for the cortical gray matter, and for the frontal and parietal white matters. The T1rho for the frontal and parietal white matters ranged from 110 to 133 ms and from 122 to 155 ms with locking field strengths from 50 microT to 250 microT, respectively. Accordingly, the values for the gray matter ranged from 127 to 155 ms. With a locking field strength of 50 microT, T1rho(off) for the frontal and parietal white matters were from 114 to 217 ms and from 126 to 219 ms, and for the gray matter from 136 to 267 ms with the angle between the effective magnetic field (B(eff)) and the z-axis (theta) ranging from 60 degrees to 15 degrees, respectively. The T1rho of the white and gray matters increased significantly with increasing locking field amplitude (p < 0.001). The T1rho(off) decreased significantly with increasing theta (p < 0.001). T1rho and T1rho(off) with theta > or = 30 degrees were statistically significantly shorter in the frontal than in the parietal white matters (p < 0.05). The duration, amplitude and theta of the locking pulse provide additional parameters to optimize contrast in brain SL imaging.  相似文献   

5.
OBJECTIVE: The significance and etiology of focal brain lesions in systemic lupus erythematosus (SLE) are unknown. Our purpose was to determine whether the neurochemistry of focal lesions and normal appearing brain tissues in SLE were consistent with neuronal loss, demyelination, or ischemia. METHODS: Patients with SLE (n = 14) and controls (n = 13) were studied using magnetic resonance imaging (MRI) and spectroscopic imaging (SI) at 1.5 Tesla. RESULTS: MRI detected fixed focal brain lesions (n = 16) and SI measured brain metabolites, including N-acetylaspartate (NAA), creatine (Cre), choline (Cho), and lactate (Lac). NAA/Cre of normal appearing brain was decreased in patients with SLE compared to controls: grey matter (1.74 +/- 0.16 vs 1.92 +/- 0.18; p = 0.01), occipital white matter (1.98 +/- 0.22 vs 2.23 +/- 0.16; p = 0.004), and periventricular white matter (2.00 +/- 0.23 vs 2.33 +/- 0.23; p = 0.001). Lesions were characterized by markedly decreased NAA/Cre relative to normal appearing tissues in the same patient (1.67 +/- 0.22 vs 1.88 +/- 0.14; p = 0.0002). Elevated Cho/Cre was observed in 25% of focal lesions and 21% of normal appearing tissues. No elevation of lactate was observed in lesions or normal appearing tissues. CONCLUSION: SI detects focal and generalized brain abnormalities in SLE characterized by decreased NAA, elevated choline, and normal lactate. These findings are consistent with widespread neuronal injury and demyelination, but are not consistent with anaerobic metabolism.  相似文献   

6.
Rates of adenosine triphosphate (ATP) metabolism are higher in cerebral gray matter than in white matter. Like other excitable tissues, brain contains a phosphocreatine (PCr)/creatine kinase (CK)/ATP system including cytosolic (B-CK) and mitochondrial (Mi-CK) isozymes. High B-CK activity is present in white and gray matter while Mi-CK is mostly in gray matter. An in situ localizing 31P-NMR technique, one-dimensional chemical shift imaging (1D-CSI), has been used to study the PCr/CK/ATP system in these regions. In the metabolically mature 4-week-old piglet, the PCr/nucleoside triphosphate (NTP) ratio measured by the 1D-CSI technique is at least 50% higher in white than gray matter. Total creatine (Cr), ATP, and total NTP concentrations are the same in rapidly frozen rat white and gray matter, suggesting that PCr/Cr ratio is much higher in white matter. The PCr increases more in gray than white matter between 4 days and 4 weeks of age in piglet brain. The CK catalyzed reaction rate constant, measured by combining the saturation transfer experiment with the 1D-CSI, is also much higher in white than gray matter at both ages. The postnatal maturational increase in the CK rate constant is greater in gray matter. In summary, these differences in PCr concentration and CK reaction rates and isozymes characterize two physiologically different PCr/CK/ATP systems in gray and white matter.  相似文献   

7.
Ethical aspects to be considered in brain banking   总被引:1,自引:0,他引:1  
OBJECTIVE: To investigate MRI and proton spectroscopy changes in five patients with HIV associated dementia complex (HADC) treated with antiretroviral therapy. METHODS: Three markers were evaluated: (1) CSF/intracranial volume ratio; (2) T2 weighted signal ratio between parieto-occipital white and subcortical grey matter; and (3) metabolite ratios from long echo time (TE=135 ms) single voxel proton spectra of parieto-occipital white matter. RESULTS: Spectroscopic changes indicated initial increases in N-acetyl/(N-acetyl + choline + creatine) ratio (NA/(NA+ Cho+Cr)) and progression of atrophy after initiation of antiretroviral therapy in four of five patients. When the neurological status of the patients subsequently deteriorated (two of five patients), the NA/(NA+Cho+Cr) ratio also declined. CONCLUSIONS: Spectroscopic changes mirror reversible neuronal dysfunction. These objective, non-invasive techniques may be used for monitoring the neurological effects of antiretroviral drug therapy in patients with HADC.  相似文献   

8.
PURPOSE: Fast SE (FSE) sequences have largely replaced conventional SE (CSE) T2-weighted sequences in the brain and have been generally accepted as qualitatively comparable. The purpose of the present study was to subject these sequences to a quantitative comparative analysis in the brain. METHOD: A quantitative analysis of relative signal intensities of white and gray matter was performed comparing CSE and FSE T2-weighted sequences in brains of 20 children at varying stages of myelination. RESULTS AND CONCLUSION: At all ages in individual patients, white matter had less signal intensity (SI) relative to gray matter on FSE than CSE, though the relative difference in SI was small. This resulted in white matter appearing slightly more myelinated on FSE than CSE. This difference is attributed to differences in magnetization transfer. In myelinated brain (white matter hypointense to gray matter), contrast-to-noise was greater with FSE, while in unmyelinated brain, contrast-to-noise was greater with CSE.  相似文献   

9.
Previous studies of the brains of normal infants demonstrated lower lactate (Lac)/choline (Cho), Lac/creatine (Cr), and Lac/ N-acetylaspartate (Naa) peak-area ratios in the thalamic region (predominantly gray matter) compared with occipitoparietal (mainly unmyelinated white matter) values. In the present study, thalamic Cho, Cr, and Naa concentrations between 32-42 weeks' gestational plus postnatal age were greater than occipito-parietal: 4.6 +/- 0.8 (mean +/- SE), 10.5 +/- 2.0, and 9.0 +/- 0.7 versus 1.8 +/- 0.6, 5.8 +/- 1.5, and 3.4 +/- 1.1 mmol/kg wet weight, respectively: Lac concentrations were similar, 2.7 +/- 0.6 and 3.3 +/- 1.3 mmol/kg wet weight, respectively. In the thalamic region, Cho and Naa T2s increased, and Cho and Lac concentrations decreased, during development. Lower thalamic Lac peak-area ratios are principally due to higher thalamic concentrations of Cho, Cr, and Naa rather than less Lac. The high thalamic Cho concentration may relate to active myelination; the high thalamic Naa concentration may be due to advanced gray-matter development including active myelination. Lac concentration is higher in neonatal than in adult brain.  相似文献   

10.
The authors used functional magnetic resonance imaging (fMRI) to determine whether acute intravenous (i.v.) cocaine use would change global cerebral blood flow (CBF) or visual stimulation-induced functional activation. They used flow-sensitive alternating inversion recovery (FAIR) scan sequences to measure CBF and blood oxygen level-dependent (BOLD) sensitive T2* scan sequences during visual stimulation to measure neuronal activation before and after cocaine and saline infusions. Cocaine (0.6 mg/kg i.v. over 30 seconds) increased heart rate and mean blood pressure and decreased end tidal carbon dioxide (CO2). All measures returned to baseline by 2 hours, the interinfusion interval, and were unchanged by saline. Flow-sensitive alternating inversion recovery imaging demonstrated that cortical gray matter CBF was unchanged after saline infusion (-2.4 +/- 6.5%) but decreased (-14.1 +/- 8.5%) after cocaine infusion (n = 8, P < 0.01). No decreases were detected in white matter, nor were changes found comparing BOLD signal intensity in cortical gray matter immediately before cocaine infusion with that measured 10 minutes after infusion. Visual stimulation resulted in comparable BOLD signal increases in visual cortex in all conditions (before and after cocaine and saline infusion). Despite a small (14%) but significant decrease in global cortical gray matter CBF after acute cocaine infusion, specific regional increases in BOLD imaging, mediated by neurons, can be measured reliably.  相似文献   

11.
Cocaine can cause a variety of neuropsychiatric and neurobehavioral complications; however, it is uncertain whether cocaine causes persistent cerebral structural and neurochemical abnormalities in asymptomatic users. We studied 52 African-American men (26 human immunodeficiency virus-negative asymptomatic heavy cocaine users and 26 normal subjects). Ventricle-to-brain ratio (VBR) and white matter lesions (WML) were quantified on magnetic resonance imaging. N-acetyl-containing compounds (NA), total creatine, choline-containing compounds, myo-inositol, and glutamate + glutamine were measured with in vivo proton magnetic resonance spectroscopy, VBR and WML were not significantly different in the cocaine users compared to the normal controls. Elevated creatine (+7%; p = .05) and myo-inositol (+18%; p = .01) in the white matter were associated with cocaine use. NA, primarily a measure of N-acetyl aspartate and neuronal content, was normal. Normal NA suggest no neuronal loss or damage in the brain regions examined in these cocaine users. Therefore, we conclude that neurochemical abnormalities observed might result from alterations in nonneuronal brain tissue.  相似文献   

12.
Cerebral 1H MR spectra were recorded in 13 children and adolescents with schizophrenia and 12 healthy children and adolescents. Stimulated echo acquisition mode (STEAM) sequence was used to localize an 8-ml voxel bilaterally in the frontal gray matter. The frontal gray matter metabolite ratios for NAA/Cr, Ch/Cr, Glx/Cr, and mI/Cr in schizophrenic children and adolescents were 1.08 +/- .28, .64 +/- .23, 1.09 +/- .30, and .60 +/- .24, respectively. In comparison, these ratios were 1.59 +/- .35, .74 +/- .27, 1.23 +/- .36, and .58 +/- .29 in healthy children and adolescents. Decrease in the frontal lobe NAA/Cr of schizophrenic children and adolescents was statistically significant (P < .001). In contrast, the MR spectra localized bilaterally in the occipital gray matter (8 ml) showed no significant changes between the patients and the controls. In the occipital gray matter, the metabolite ratios were 1.21 +/- .26,.52 +/- .08, 1.00 +/- .11, and.55 +/- .12 inpatients versus 1.30 +/- .23, .45 +/- .10, 1.15 +/- .20, and .48 +/- .19 in controls. Our preliminary finding of reduced NAA/Cr ratio in the frontal gray matter is consistent with the neurodevelopmental models emphasizing dysfunction of frontal lobe areas in patients with schizophrenia.  相似文献   

13.
The goals of the current study were threefold: first, to confirm previous single volume proton (1H) magnetic resonance spectroscopy results of reduced N-acetyl aspartate (NAA, a putative marker of neurons) in multiple sclerosis (MS) white matter lesions using multiple volume 1H magnetic resonance spectroscopic imaging (MRSI); second, to measure the phospholipid metabolites phosphomonoesters and phosphodiesters in such lesions using phosphorus (31P) MRSI; and third, to test the hypothesis that biochemical changes occur in the normal-appearing (on spin echo T2-weighted magnetic resonance images) white matter in patients with MS. Thirteen subjects with clinically definite MS were studied with both 1H and 31P MRSI, and 19 controls were studied with either 1H MRSI, 31P MRSI, or both. MS lesion, MS normal-appearing white matter, and region-matched control spectra from the centrum semiovale were analyzed. The major findings of this study were that in both white matter lesions and normal-appearing white matter in patients with MS, the metabolite ratio NAA/creatine and the total 31P peak integrals were significantly reduced compared with controls. In addition, in MS lesions NAA/choline and phosphodiesters/total 31P were significantly reduced compared with controls, and in MS normal-appearing white matter there was a trend for NAA/choline to be reduced compared with controls. In normal-appearing white matter in patients with MS, total creatine and phosphocreatine were significantly increased compared to controls, as detected with both 1H (total creatine peak integrals) and 31P (phosphocreatine/total 31P) MRSI techniques. These results suggest reduced neuronal density and altered phospholipid metabolites in white matter lesions in patients with MS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We describe the implementation and validation of a combined dynamic-autoradiographic approach for measuring the regional cerebral blood flow (rCBF) with 15O-butanol. From arterial blood data sampled at a rate of 1 s and list mode data of the cerebral radioactivity accumulated over 100 s, the time shift between blood and tissue curves, the dispersion constant DC, the partition coefficient p, and the CBF were estimated by least squares fitting. Using the fit results, a pixel-by-pixel parametrization of rCBF was computed for a single 40-s (autoradiographic) 15O-butanol uptake image. The mean global CBF found in 27 healthy subjects was 49 +/- 8 ml 100 g-1 min-1. Gray and white matter rCBF were 83 +/- 20 and 16 +/- 3 ml 100 g-1 min-1, respectively, with a corresponding partition coefficient p of 0.77 +/- 0.18 and 0.77 +/- 0.29 ml/g in both compartments. The quantitative images resulted in a significantly higher gray matter rCBF than the autoradiographic images.  相似文献   

15.
Assess the feasibility of proton MR spectroscopic imaging (1H-MRSI) of the striatum (putamen and caudate nucleus) in patients with Parkinson's disease and evaluate striatal neuronal density. Proton MRSI of the striatum and thalamus with 2 cc spatial resolution was performed in 10 patients with Parkinson's disease, 1 patient with atypical parkinsonism, and 13 control subjects. Single voxel proton MR spectra with signals from choline metabolites (Cho), creatine metabolites (Cr), and the putative neuronal marker, N-acetyl-aspartate (NAA), were obtained from the putamen and thalamus, but not the caudate nucleus, of patients with parkinsonism and control subjects. Metabolite rations in controls and patients were: in putamen NAA/Cho 1.70 +/- 0.25 vrs 1.74 +/- 0.32, NAA/Cr 2.80 +/- 0.79 vrs 2.36 +/- 0.42, Cho/Cr 1.63 +/- 0.25 vrs 1.39 +/- 0.3; in thalamus, NAA/Cho 1.78 +/- 0.15 vrs 1.62 +/- 0.22, NAA/Cr 2.78 +/- 0.34 vrs 2.64 +/- 0.41, Cho/Cr 1.57 +/- 0.25 vrs 1.65 +/- 0.28. There were no statistically significant differences between patients and controls. The putaminal NAA/Cho ratio of the single subject with atypical parkinsonism was lower than that of 9 of the 10 patients with classic Parkinson's disease and 11 of the 13 control subjects. Likewise, the putaminal NAA/Cr ratio in the single subject with atypical parkinsonism was lower than that of 7of the patients with guided selection of spectra from very small brain volumes, is a technique that can be used to evaluate neuronal density in individual subcortical gray nuclei in the brains of patients with parkinsonism. Using this technique, we have shown that Parkinson's disease produces no change in relative levels of the neuronal marker, NAA, in the putamen.  相似文献   

16.
The spatial distribution of metabolite signal intensities can be measured within entire sections of the brain by proton magnetic resonance spectroscopic imaging (1H-MRSI). A group of six patients (4 unrelated girls and 2 brothers from 5 families) with childhood ataxia with diffuse CNS hypomyelination (CACH) underwent long-echo-time, single-slice 1H-MRSI. Relative to controls, there was a decrease in the signal intensity of N-acetylaspartate, choline, and creatine throughout the white matter in all six patients. We identified lactate signals in white matter in three of them with advanced disease. The degree of white matter involvement was not homogeneous over the entire patient group, but did correlate with clinical presentation. Deep and posterior white matter tended to be more involved. There were no 1H-MRSI abnormalities in the gray matter. 1H-MRSI findings suggest that this syndrome is secondary to a metabolic defect causing hypomyelination, axonal degeneration, and, in the most compromised cases, accumulation of lactate. This study shows that CACH is not limited to girls.  相似文献   

17.
The ability to use fMRI in a monkey model would bridge the gap between the fMRI demonstration of cerebral activation in humans and the cumulative wealth of monkey data on the functional organization of the brain from single electrode mapping, radioisotope and histology studies. We report a new technique for fMRI in an awake co-operative rhesus macaque (Macaca mulatta) in a conventional clinical 1.5T MR scanner and present the first fMRI images from a macaque. Good resolution, signal-to-noise ratio and BOLD response (2.6-4.6%) have been achieved using the manufacturer's standard volume knee coil. T1 values of macaque gray and white matter (1490 ms, 1010 ms respectively) are higher than human brain, whereas T2 values are lower (55 ms, 48 ms respectively). An MR-compatible design for restraining the monkey is also described, along with a suitable EPI sequence for BOLD images, optimized for monkey T2, with voxel sizes from 29 to 61 microl, and MPRAGE sequence for anatomical studies with 0.8 mm isotropic resolution, optimized for monkey T1.  相似文献   

18.
A nuclear magnetic resonance (NMR) spectrometer equipped with a magnet producing a high and extremely uniform magnetic field (7.05 T) was combined with a strong field gradient coil (3.5 mT/cm) and applied to MR microimaging of the mouse brain to visualize its topographical structure. Since the proton-density-weighted condition (long repetition time (TR) and short echo time (TE); TR/TE = 3,000 ms/10.4 ms) was found to be the most suitable for imaging the mouse brain, mid-sagittal and coronal sections in 1-mm- or 0.3-mm-thick slices were imaged according to the multislice spin echo sequence with 2 or 8 acquisitions, a 2 kHz pulse width and a 256 x 256 data matrix. As expected, the resolution of MR microimaging was comparable to that of the histological sections. The white matter especially, could be distinguished from the gray matter in some regions of the brain. Coronal sections of the brain also showed that the hippocampal CA1-CA3 regions were distinguishable from the other regions. The results suggested that the present MR microimaging technique might be a useful tool for the study of topological anatomy and submicroscopic research using brains of small laboratory animals.  相似文献   

19.
In localized proton magnetic resonance spectroscopy very short echo times (TE) are achieved to diminish signal loss due to T2 relaxation and to avoid phase distortions due to J-coupling. A sequence for single volume spectroscopy in human brain is described with a TE as low as 5 ms. Examinations were performed on a 1.5 T whole-body imager with actively shielded gradients. A self-designed stimulated echo acquisition mode (STEAM) sequence with very high amplitude spoiling gradients of 24 mT/m was used to take advantage of the whole potential of the gradient system. Optimization of TE was carried out by controlling spectral quality and localization in both phantom and volunteer measurements. Proton spectra of human brain were acquired in 21 healthy volunteers. Spectra of occipital white matter, parieto-occipital grey/white matter, and cerebellum revealed none or only small eddy current distortions at a TE of 5 ms. The volume of interest was 8-12 ml, repetition time was 1.5 s, and mixing time was 5 ms. Peak ratios of major metabolites referring to creatine were estimated and the relative standard deviations were calculated to determine interindividual reproducibility. The relative standard deviation of myo-inositol ranged from 6% to 11% within these brain regions whereas for glutamine and glutamate 7% to 16% were found.  相似文献   

20.
A prolonged MR T2 relaxation time was proposed to mark the presence and severity of Alzheimer's disease (AD). We studied the value of T2 relaxometry in diagnosing early AD. T2 was measured from 54 patients with AD, 25 subjects with age-associated memory impairment (AAMI), 18 elderly and 16 young controls. The AD patients had longer T2 in the right hippocampal head (104 +/- 11 ms) and tail (98 +/- 10 ms) than age-matched controls (95 +/- 5 and 92 +/- 9 ms, respectively). This prolongation was not related to age. In the AD group, the T2 of the left hippocampal head also correlated with the clinical severity. The T2 of the amygdala did not differ across the groups. Increased T2 in the temporal and parietal white matter and the thalamus related to increasing age rather than to the diagnostic category. The AAMI subjects had T2 comparable with those of age-matched controls. Despite the prolongation of T2 in the AD group the possible diagnostic value was compromized by a substantial overlap between the study groups. We, thus, conclude that the T2 relaxometry is not a reliable method for diagnosing early AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号