首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以自制Mo-Fe-B-Cr药芯焊丝为原料,采用等离子熔敷技术在316不锈钢基体表面制备硼化物覆层,研究了覆层的显微组织、硬度、耐磨和耐腐蚀性能.结果表明:硼化物覆层与基体间形成良好的冶金结合,覆层中存在厚度约100μm的渐变层,渐变层中发生了元素的相互扩散;覆层组织中γ-Fe黏结相包裹着块状硬质相Mo2 FeB2和(Mo,Fe,Cr)3 B2,同时枝晶状分布的黏结相间存在大量网状共晶组织(Fe,Cr)2 B、(Fe,Cr)23(C,B)6;覆层的最大显微硬度达757 HV,约为基体硬度的3.4倍;覆层的磨损质量损失小于基体的,覆层具有优异的耐磨性能,磨损机理为黏结相的微切削导致硬质相颗粒的脆性剥落,从而形成磨粒磨损;覆层在质量分数5%NaCl溶液中的自腐蚀电位略高于基体的,自腐蚀电流密度小于基体的,覆层具有良好的耐腐蚀性能.  相似文献   

2.
预氮化对碳素工具钢560℃双辉等离子渗铬的影响   总被引:1,自引:0,他引:1  
为了降低双辉等离子渗铬的工艺温度,提高低温渗铬速度,对T10钢表面在550℃进行不同时间的离子预氮化处理,再进行560℃×4h低温双辉等离子渗铬,对渗层的组织与硬度进行了研究.结果表明:各种条件下渗铬后,表面均形成铬的沉积层 扩散层,沉积层厚度4~5μm,组织致密,与基体结合良好;扩散层铬含量与显微硬度随预氮化时间的增加而增加,且均呈梯度分布;未经预氮化处理试样的扩散层深20μm左右,表面物相为铁、铁-铬固溶体、铬碳化物(Cr7C3,Cr23C6),表面显微硬度约700HV;预氮化后试样的扩散层深25~30μm,表面物相主要为铬、铁-铬固溶体、铬碳化物(Cr7C3,Cr23C6)、铬氮化物(CrN),显微硬度达915~1250HV,较未预氮化的试样提高45%以上.  相似文献   

3.
钴基合金等离子喷焊组织结构和性能研究   总被引:5,自引:0,他引:5  
用光学显微镜、扫描电镜、X射线衍射仪和显微硬度计对钴基合金等离子喷焊的组织结构和显微硬度以及时效过程中的物相和显微硬度变化进行了研究。结果表明:合金层主要是由γCo和(Cr,Fe)7C3构成,可以分为3个不同的层区,表现出亚共晶的组织形态。时效过程中物相发生了变化,(Cr,Fe)7C3转变为Cr23C6,时效后细枝晶亚层显微硬度平均提高约29%。时效过程中物相的析出是细枝晶亚层显微硬度发生变化的原因。  相似文献   

4.
将纯铬丝放入开有相应圆孔的HT250灰铸铁中,在1 220℃保温30min进行原位反应,制备出了不同体积分数(Fe,Cr)7C3的铁基复合材料,并采用XRD、SEM、硬度仪及磨损试验机等对复合材料的物相组成、显微组织、显微硬度及其磨料磨损性能进行了研究。结果表明:复合材料的物相主要由碳化物(Fe,Cr)7C3、铁素体(α-Fe)及奥氏体(γ-Fe)组成;随碳化物体积分数的增加,复合材料的平均显微硬度逐渐增大,最高值为1 453HV0.1;而在磨料磨损条件下的磨损量先降后升,碳化物体积分数为62%时复合材料的耐磨性最好,且与BTM20Cr高铬铸铁的耐磨性相当。  相似文献   

5.
采用高纯铝、钛靶材,通过电弧离子镀工艺在TC4基材上沉积制备了TiN/AlN-TiAlN复合多层膜,用HV-1000型显微硬度计测试了膜层的硬度,用球盘磨损试验对比研究了膜层和基材的耐磨性。结果表明:膜层硬度为2856HV,耐磨性相比基材提高6倍以上。  相似文献   

6.
采用反应等离子喷涂技术在ZL104合金基体上依次沉积NiCrAl黏结层和TiN复相涂层,通过X射线衍射、组织观察、硬度测试、拉伸及磨损试验等方法研究了涂层的物相组成、微观形貌、结合强度、硬度及耐磨性能,并探讨了磨损机制。结果表明:复相涂层由TiN、TiN_(0.3)和少量TiO_2组成,其组织致密,存在少量孔隙和微裂纹;涂层与ZL104合金结合良好,结合强度达17.7MPa;TiN复相涂层的平均显微硬度为1 330HV,约为基体的22倍,磨损量随载荷的增加而增加,且远小于基体的;ZL104合金的磨损机制为微切削磨粒磨损和微疲劳磨损,TiN复相涂层的为微切削磨粒磨损。  相似文献   

7.
采用粉末包埋法对Q235钢进行硼碳氮共渗处理,并对共渗层进行氩弧重熔处理;研究了硼碳氮共渗层和氩弧重熔层的物相、截面形貌、显微硬度以及磨粒磨损和冲蚀磨损性能。结果表明:共渗层中生成了FeB、Fe2B、Fe2N、Fe8N及Fe3C相,氩弧重熔使得共渗层中的FeB、Fe2N、Fe8N相消失,生成了新相Fe2 3(C,B)6和Fe3N;共渗层的峰值显微硬度为1 198.4 HV,氩弧重熔层的为1 192.8HV,且硬度梯度变化平缓;共渗层和重熔层的耐磨性能均优于基体的,且重熔层的耐磨性能优于共渗层的。  相似文献   

8.
采用双辉等离子渗金属技术在0Cr18Ni9奥氏体不锈钢表面制备出厚度为22μm均匀致密的渗铌合金化层;分析了合金化层的成分、显微组织及其摩擦磨损性能。结果表明:铌合金化层主要由铌的碳化物(NbC、Nb6C5)和金属间化合物(Cr2Nb、Fe2Nb)组成,表面硬度较基体提高一倍左右,达到614 HV0.025;合金化层的摩擦因数(8.05×10-2)与基体的(7.97×10-2)基本相同;基体和合金化层均以粘着磨损和磨粒磨损为主要磨损形式,合金化层的磨损率较基体的明显降低。  相似文献   

9.
采用等离子弧熔覆技术在Q235钢基体上制备了镍包碳化钨增强(质量分数为50%)的铁基合金层;采用SEM、EDS和XRD等研究了合金层的组织,利用显微硬度计测试了合金层的显微硬度分布。结果表明:Q235钢表面合金层厚度可达2.6 mm,合金层中无裂纹、气孔等缺陷;合金层中WC颗粒部分溶解于铁基合金中,WC与合金层界面形成厚达数微米的反应层,其组织主要以γ-Fe为基体,其上分布着Cr_(23)C_6、Fe_3W_3C、WC和Ni_3B等强化相;合金层的显微硬度可达700~1 100 HV。  相似文献   

10.
为提高H13热锻模具的耐磨性能和耐腐蚀性能,利用激光相变硬化技术对H13钢进行处理,采用XRD衍射仪、光学显微镜、扫描电镜、显微硬度仪、电化学工作站及高温摩擦磨损试验机对其相结构、显微硬度、耐腐蚀性及耐高温磨损性能进行测试。硬化层由针状马氏体、板条马氏体和碳化物组成,硬化深度为0.71 mm,显微硬度约为750 HV0.3。在脱模剂溶液中,硬化层的自腐蚀电流密度比基材小一个数量级。硬化层高温磨损的质量为基材的7%,磨损机理以黏着磨损为主,同时伴有磨粒磨损和氧化磨损。  相似文献   

11.
采用超音速火焰喷涂球形烧结态Cr3C2-25%NiCr复合粉末制备高温耐磨损涂层,分析了涂层的显微组织结构,测试了涂层的结合强度、硬度和耐磨性能,结果表明:涂层中以Cr3C2为主的颗粒增强相弥散分布在NiCr固溶体中,涂层的显微硬度比基体(2Cr12MoV)提高了3倍多,摩擦磨损性能也有明显提高。  相似文献   

12.
采用等离子原位冶金技术,在膨胀锥用20CrMnTi低合金钢基体表面制备了Cr-Mn-Fe耐磨复合强化层,采用OM、XRD和显微硬度计分析了该强化层的组织结构以及硬度分布特征,并通过磨损试验机进行了磨损试验。结果表明,该强化层在微观组织上与20CrMnTi钢基体呈良好的冶金结合状态,性能匹配良好;强化层主要由γ-(Fe,Cr,Mn)基体及(Cr,Fe)7(C,B)3碳化物硬质相组成;由强化层表面至基体呈现出梯度递减的硬度分布特征,强化层的硬度显著高于20CrMnTi钢基体;强化层的相对耐磨性高出母材20CrMnTi钢10倍以上。  相似文献   

13.
在ZL101A铝合金表面制备了微弧氧化陶瓷层,采用扫描电镜、X射线衍射仪、显微硬度计、高温摩擦磨损试验机等研究了该陶瓷层的显微组织、物相组成、显微硬度和摩擦磨损性能。结果表明:微弧氧化陶瓷层主要由α-Al_2O_3和γ-Al_2O_3相组成,其层厚约60μm,表层疏松、内层致密;该陶瓷层的平均硬度为1 740.9HV,远高于ZL101A铝合金的150.2HV,摩擦因数与磨损质量损失均小于ZL101A铝合金的,其磨损机理主要为磨粒磨损。  相似文献   

14.
对表面覆有石墨浆料的锆合金进行激光合金化处理,以此来改善Zr-4合金的表面性能。利用扫描电子显微镜、X射线衍射仪、维氏显微硬度测试仪分析了涂层的微观形貌、物相成分及硬度变化情况。结果表明:石墨粉末在熔池中出现了显著的分解和溶解,以此形成了厚度均匀且无孔洞裂纹等缺陷的渗碳层;渗碳层中含有Zr、Sn、Zr C、Zr O2、Sn O2等物相;与基材相比,渗碳层的硬度得到了明显的提升,约为基材硬度的四倍。  相似文献   

15.
铁素体不锈钢激光熔覆层组织和性能研究   总被引:1,自引:0,他引:1  
采用无碳合金粉末和低碳合金粉末对铁素体不锈钢进行激光表面熔覆处理,借助光学显微镜(Optical microscope,OM)、扫描电子显微镜(Scanning electron microscopy,SEM)、能谱分析仪(Energy dispersive spectrometry,EDS)、X射线衍射仪(X-ray diffractometry,XRD)、显微硬度仪、摩擦磨损试验仪、电化学工作站对熔覆层显微组织、化学成分、硬度、耐磨性和耐蚀性进行评价。结果表明,两种激光熔覆层均无裂纹、气孔等宏观缺陷,显微组织主要由等轴晶、包状晶、树枝晶和枝间共晶组成。无碳熔覆层与低碳熔覆层均含有α-Fe、Fe-Cr合金相、Cr单质相以及Cr_(9.1)Si_(0.9)、Fe_(9.7)Mo_(0.3)、Fe_(10.8)Ni、Fe_(19)Mn等金属间化合物。此外,低碳熔覆层还产生了间隙化合物Cr_7C_3以及马氏体相C_(0.055)Fe_(1.945)。低碳熔覆层硬度为750 HV0.5,显著高于母材硬度250 HV0.5;无碳熔覆层硬度为650 HV0.5,其热影响区发生软化。激光熔覆层相对于母材具有更为稳定的摩擦特性以及优异的耐磨性和耐蚀性,其中低碳熔覆层耐磨性和耐蚀性均优于无碳熔覆层。  相似文献   

16.
为了提高TC4钛合金的表面硬度及耐磨性,对其进行了820℃×10h的低压渗氮处理;通过X射线衍射仪、光学显微镜、扫描电子显微镜、显微硬度计及磨损试验机研究了表面渗氮层的显微组织与耐磨性能。结果表明:渗氮处理后,该钛合金表面形成了由表面氮化物层和次表面氮扩散层组成的渗氮层,其物相组成为TiN、Ti_2AlN和Ti_3Al;渗氮层的表面硬度为800~900HV,比基体的提高了近3倍,截面硬度随着深度的增加而下降;在相同条件下,渗氮后试样的磨损质量损失比未经渗氮处理的小,且随载荷的增加磨损质量损失增加更缓慢,耐磨性得到了极大的改善。  相似文献   

17.
低硬度和较差的耐磨性制约了钛铝基合金在航空领域的应用。为了提高Ti2AlNb合金的表面硬度和耐磨性,采用双层辉光等离子表面合金化技术对Ti2AlNb合金表面进行渗Cr处理,并对其微观组织、扩散特性及显微硬度和耐磨性进行了分析测试。结果表明:经等离子渗铬处理后,可获得约25μm的合金层;渗层中Cr含量随渗层深度有显著变化且在高温条件下因各原子扩散能力的差异,以基体中Al和Nb量的变化为主,在渗层的不同区域形成不同的相,表层以含Cr2Nb的Laves相和Al8Cr5相为主,而在渗层和基体的交界处形成新的无序O相(Ti25.36Al18.44Nb);渗层硬度值由外层的HV1125逐渐过渡到基体的HV432,渗层与基体的界面处由于无序O相的析出而硬度最低。渗Cr处理将合金的摩擦因数由原来的0.24降低到0.15,磨损率降低了60%以上。  相似文献   

18.
堆焊合金中合金元素 Cr 和 V 与堆焊层中的 C 形成 Cr7C3及 VC 等硬质相,在此基础上加入B 元素,形成相应的 TiB2,可进一步增加其硬度和耐磨性;因此,在高 Cr 合金中加入 B4C 制成粉芯,用埋弧焊堆焊的方法得到合金,测量宏观硬度并且观察了显微组织。结果显示,随着 B4C 含量增加,试样中硬质相比例增加,提高了试样的硬度,一定程度上增加了耐磨性(B4C 含量1.5%-3.5%为宜);但 B4C 含量过高(B4C 含量达到3.0%左右),晶界偏析加大,易导致堆焊层开裂。  相似文献   

19.
以Ni60、TiO2、B4C、C、Al粉为原料,利用激光熔覆技术在45#号钢表面原位合成制备了TiC/TiB2增强的复合涂层,采用金相显微镜、扫描电镜(SEM)、X射线衍射仪(XRD)、维氏硬度计对涂层组织进行测试分析。结果表明:复合涂层内部无裂纹、气孔等缺陷,与基体呈冶金结合;其主要物相为Ni3(Al,Ti)、TiC、TiB2、(Fe,Cr)7C3和α-Fe;激光熔覆过程中原位合成的块状TiC和六边形状TiB2增强相弥散分布在复合涂层中,明显提高了熔覆层显微硬度;涂层显微硬度呈梯度分布,最大可达767Hv0.2,约为基材显微硬度的3倍。  相似文献   

20.
通过激光熔覆Ni60合金包覆WC粉(简称镍包WC粉)在45钢基体上制备了WC增强镍基合金熔覆涂层,研究了涂层的显微组织、物相组成、显微硬度与耐磨性能等,并与Ni60合金+WC机械混合粉熔覆涂层的进行对比。结果表明:2种熔覆涂层均与基体形成冶金结合;与Ni60合金+WC机械混合粉熔覆涂层相比,镍包WC粉熔覆涂层组织更细小,成分偏析程度较轻;2种熔覆涂层均由γ-(Ni,Fe)固溶体、WC、Cr_(23)C_6、Cr_7C_3、W_2C等物相组成,镍包WC粉熔覆涂层中WC相的结构完整性较好;镍包WC粉熔覆涂层的平均显微硬度为933.1HV,略高于Ni60合金+WC机械混合粉熔覆涂层的(901.4HV);镍包WC粉熔覆涂层的平均摩擦因数和磨损体积分别为0.4,7.52×10~(-3) mm~3,均低于Ni60合金+WC机械混合粉熔覆涂层的,镍包WC粉熔覆涂层的耐磨性能优于Ni60合金+WC机械混合粉熔覆涂层的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号