首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Birnessite-type MnO2/activated carbon nanocomposites have been synthesized by directly reducing KMnO4 with activated carbon in an aqueous solution. It is found that the morphologies of MnO2 grown on activated carbon can be tailored by varying the reaction ratio of activated carbon and KMnO4. An asymmetric supercapacitor with high energy density was fabricated by using MnO2/activated carbon (MnO2/AC) nanocomposite as positive electrode and activated carbon as negative electrode in 1 M Na2SO4 aqueous electrolyte. The asymmetric supercapacitor can be cycled reversibly in the cell voltage of 0–2 V, and delivers a specific capacitance of 50.6 F g−1 and a maximum energy density of 28.1 Wh kg−1 (based on the total mass of active electrode materials of 9.4 mg), which is much higher than that of MnO2/AC symmetric supercapacitor (9.7 Wh kg−1).  相似文献   

2.
We report a surfactant-free chemical solution route for synthesizing one-dimensional porous SnO2 helical nanotubes templated by helical carbon nanotubes and two-dimensional SnO2 sheets templated by graphite sheets. Transmission electron microscopy, X-ray diffraction, cyclic voltammetry, and galvanostatic discharge–charge analysis are used to characterize the SnO2 samples. The unique nanostructure and morphology make them promising anode materials for lithium-ion batteries. Both the SnO2 with the tubular structure and the sheet structure shows small initial irreversible capacity loss of 3.2% and 2.2%, respectively. The SnO2 helical nanotubes show a specific discharge capacity of above 800 mAh g−1 after 10 charge and discharge cycles, exceeding the theoretical capacity of 781 mAh g−1 for SnO2. The nanotubes remain a specific discharge capacity of 439 mAh g−1 after 30 cycles, which is better than that of SnO2 sheets (323 mAh g−1).  相似文献   

3.
Hausmannite Mn3O4 polyhedral nanocrystals have been successfully synthesized via a simple solution-based thermolysis route using a three-dimensional hydrogen-bonded polymer as precursor. The as-obtained product was characterized by means of powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Possible formation mechanism of polyhedral nanocrystals was proposed based on the role of organic ligand dissociation from the polymer precursor at elevated temperature. The electrochemical capacitance performance of Mn3O4 electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. A maximum specific capacitance of 178 F g−1 was obtained for the nanocrystals in a potential range from −0.1 to 0.8 V vs. SCE in a 0.5 M sodium sulfate solution at a current density of 0.2 A g−1.  相似文献   

4.
Lamellar birnessite-type MnO2 materials were prepared by changing the pH of the initial reaction system via hydrothermal synthesis. The interlayer spacing of MnO2 with a layered structure increased gradually when the initial pH value varied from 12.43 to 2.81, while the MnO2, composed of α-MnO2 and γ-MnO2, had a rod-like structure at pH 0.63. Electrochemical studies indicated that the specific capacitance of birnessite-type MnO2 was much higher than that of rod-like MnO2 at high discharge current densities due to the lamellar structure with fast intercalation/deintercalation of protons and high utilization of MnO2. The initial specific capacitance of MnO2 prepared at pH 2.81 was 242.1 F g−1 at 2 mA cm−2 in 2 mol L−1 (NH4)2SO4 aqueous electrolyte. The capacitance increased by about 8.1% of initial capacitance after 200 cycles at a current density of 100 mA cm−2.  相似文献   

5.
Nanorod-shaped LiMn1.5Ni0.5O4 cathode powders were synthesized by a co-precipitation method with oxalic acid. Their structures and electrochemical properties were characterized by SEM, XRD and galvanostatic charge-discharge tests. The resulting nanorod-shaped LiMn1.5Ni0.5O4 cathode active materials delivered a specific discharge capacity of 126 mAh g−1 at 0.1 C rate. These active materials exhibited better capacity retention and higher rate performance than those of LiMn1.5Ni0.5O4 cathode powders with irregular morphology.  相似文献   

6.
Different MnO2 nanostructures were synthesized in stoichiometric KMnO4/MnSO4 aqueous solutions in the absence/presence of Fe3+ at temperature ranging from 30 °C to 180 °C. The phase structures, morphologies and electrochemical properties of the as-prepared MnO2 products were investigated using X-ray powder diffraction, scanning electron microscope, N2 physical adsorption and cyclic voltammetry techniques. The results showed that the presence of Fe3+ addition had a significant effect on the phase structural evolution, morphological features and electrochemical properties of the MnO2 products. Fe3+ was found to greatly prevent the epitaxial growth and crystallization of MnO2 nucleus, which in turn influenced textual characteristics. The electrochemical performance of the nanostructured MnO2 products had a complex relationship with the phase structures, specific surface area as well as pore characteristics. MnO2 prepared in the presence of Fe3+ (KMF-MnO2) showed relatively higher specific capacitance compared to that of MnO2 prepared in the absence of Fe3+ (KM-MnO2). Maximum capacitance of 214 F g−1 was obtained for KMF-MnO2 prepared at 30 °C at a scan rate of 2 mV s−1 in 0.1 M Na2SO4 electrolyte.  相似文献   

7.
In this paper, an efficient microwave-assisted homogeneous synthesis approach by urea hydrolysis is used to synthesize cobalt-basic-carbonate compounds. The dimensions and morphology of the synthesized precursor compounds are tailored by changes in the incorporated anions (CO32− and OH) under different conditions of temperature and time under microwave irradiation. The wire-like cobalt-basic-carbonate compound self-assembles into one-dimensional porous arrays of Co3O4 nanowires constructed of interconnected Co3O4 nanocrystals along the [1 1 0] axis after thermal decomposition at 350 °C. The textural characteristics of the Co3O4 products have strong positive effects on their electrochemical properties as electrode materials in lithium-ion batteries. The obtained porous nanowire Co3O4 arrays exhibit excellent capacity retention and rate capability at higher current rates, and their reversible capacity of 600 mAh g−1 can be maintained after 100 cycles at the high current rate of 400 mA g−1.  相似文献   

8.
Various α-MnO2 nanostructures have been successfully synthesized by a simple hydrothermal method based on the redox reactions between the MnO4 and H2O in mixture containing KMnO4 and HNO3. The effect of varying the hydrothermal time to synthesize MnO2 nanostructures and the forming mechanism of α-MnO2 nanorods were investigated by using XRD, SEM and TEM. The results revealed an evolvement of morphologies ranging from brushy spherical morphology to nanorods depending upon the hydrothermal time. The surface area of the synthesized nanomaterials varied from 89 to 119 m2/g. Electrochemical properties of the products were evaluated using cyclic voltammetry and galvanostatic charge–discharge studies, and the sample obtained by hydrothermal reaction for 6 h at 120 °C showed maximum capacitance with a value of 152 F/g. In addition, long cycle life and excellent stability of the material were also demonstrated.  相似文献   

9.
Nanostructured manganese dioxide, MnO2, was synthesized by a sonochemical method. Nanostructured MnO2 had the shapes of flower-like and nanowires by changing the pH in the aqueous solution, as observed via scanning electron microscopy and transmission electron microscopy. The electrochemical capacitance was studied by cyclic voltammetry. A maximum specific capacitance of 300 Fg−1 was obtained for the nanowires in a potential range from 0.1 to 0.9 V vs. SCE in 1 M sodium sulfate solution at a scan rate of 5 mV s−1. These materials can be useful to increase the specific capacitance by wetting behavior of electrolytes from their structural properties.  相似文献   

10.
Mesostructured Ce0.5Zr0.5O2 solid solutions (M-CZ) were hydrothermally synthesized using Gemini surfactant as the template. X-ray diffraction (XRD), small-angle X-ray diffraction (SAXRD), N2 adsorption–desorption isotherms and high-resolution transmission electronic microscopy (HRTEM) were adopted to characterize the samples. The product had a surface area of 123.5 m2 g−1 with maximum oxygen storage capacity (OSC) of 0.58 mol O2/mol Ce. Oxygen anions in the M-CZ can be repeatedly released and resumed during the redox recycles. Reduction of Ce4+ to Ce3+ or lower valence and Zr4+ to Zr3+ were fulfilled with an obvious color change during the temperature programmed reduction (TPR) process, while the crystal structure of the product remained unchanged even after severe reduction. The mesostructure of the product can improve the reductive ability of Ce4+ and Zr4+ cations, which was beneficial to the enhancement of OSC.  相似文献   

11.
A simple hydrothermal treatment was developed to synthesize Co3O4 powders with different morphologies in mass production by using hexamethylenetetramine (HMT, C6H12N4) as a precipitator. By changing the initial HMT concentrations, the prepared Co3O4 powders were readily regulated in its morphologies, which varied from microsphere to urchin-like hollow microsphere, and finally to collapsed porous structure. Moreover, the four Co3O4 powders with different HMT concentrations had been applied in the negative electrode materials for lithium ion batteries, which exhibited different electrochemical properties. The present research demonstrated that morphology was one of the crucial factors that affected the electrochemical properties of electrodes. The capacity retention of sample with an original Co(NO3)2:HMT mole ratio of 1:1 is almost above 94% from the 5th cycle at different current densities of 40 and 60 mA g−1, exhibiting the better long-life stability and favorable electrochemical behaviors due to its higher specific surface area (97.1 m2 g−1) and the uniform urchin-like hollow structure.  相似文献   

12.
Precursors of Co3O4 and Ag/Co3O4 composites with sheet-like shape were synthesized with assistance of ethylene glycol via a solvothermal process. The final samples were obtained by calcining each precursor at 400 °C. The as-prepared samples were identified and characterized by thermogravimetric analysis (TG) and differential thermal gravimetric (DTG) analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The Co3O4 and Ag/Co3O4 composite nanosheets were used as electrocatalysts modified on a glassy carbon electrode for p-nitrophenol and H2O2 reduction respectively in a basic solution. The electrocatalytic results showed that p-nitrophenol could be reduced by pure Co3O4 at a large peak current but a rather higher peak potential, and could be reduced effectively by Ag/Co3O4 composites at lower potential. Ag/Co3O4 composites with 6% Ag displayed the highest electrocatalytic activity for H2O2 reduction at the largest peak current and a lower peak potential. The reduction peak potentials of H2O2 all reduced a great deal using Ag/Co3O4 composite.  相似文献   

13.
A novel single-step synthetic method for the preparation of anatase N-doped TiO2 nanocrystalline at low temperature has been devoleped. The N-doped anatase TiO2 nanoparticles were synthesized by sonication of the solution of tetraisopropyl titanium and urea in water and isopropyl alcohol at 80 °C for 150 min. The as-prepared sample was characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV–vis absorption spectrum. The product structure depends on the reaction temperature and reaction time. The photocatalytic activity of the as-prepared photocatalyst was evaluated via the photodegradation of an azo dye direct sky blue 5B. The results show that the N-doped TiO2 nanocrystalline prepared via sonication exhibit an excellent photocatalytic activity under UV light and simulated sunlight.  相似文献   

14.
A high electrocatalytic activity of RuO2 has been found for oxygen reduction reaction (ORR) in the cathode of direct borohydride fuel cells (DBFCs). The electron transfer number n during the ORR changes from 3.58 to 3.86 and the percentage of the intermediate product H2O2 decreases from 20.8% to 7.2% correspondingly when the disk potential scans negatively from −0.39 V to −0.8 V versus Hg/HgO. Peak power densities of 425 mW cm−2 has been obtained at 60 °C, when RuO2 has been used as a cathodic catalyst in DBFCs. RuO2 displays low sensitivity to the BH4 oxidation in DBFCs. Moreover, RuO2, as a cathodic catalyst, demonstrates a superb stability during a 200-h durability test. The identical X-ray diffraction (XRD) patterns of the RuO2 before and after the durability test also prove its stability.  相似文献   

15.
A facile one-step solvothermal route was developed to synthesize monodisperse Mn3O4 and Mn2O3 nanostructures with the introduction of poly(vinyl-pyrrolidone)/stearic acid (PVP/SA) mixture. H2O2 played a key role in the determination of the products Mn3O4 and Mn2O3. The synthesis parameters for nanostructured MnOx such as surfactant and reaction time were investigated, along with their influences on morphology and composition. The morphology evolution of the Mn3O4 and Mn2O3 reveals that the nanostructures formed via two distinct mechanisms of nucleation and growth of nanocrystals.  相似文献   

16.
Nanosized 0.6Li2MnO3·0.4LiCoO2 composite cathode powders are prepared by spray pyrolysis. The micron-sized composite powders are converted into nanosized powders by a simple milling process. The mean sizes of the composite powders measured from the TEM images increase from 20 to 170 nm when the post-treatment temperatures increase from 650 to 900 °C. The Brunauer–Emmett–Teller surface areas of the composite powders post-treated at 650 and 900 °C are 24 and 3 m2 g−1, respectively. The XRD patterns indicate that the layered composite powders post-treated at 800 and 900 °C have high crystallinity and low cation mixing. The mean crystallite sizes of the powders, measured from the (003) peak widths of the XRD patterns using Scherrer's equation, are 35 and 56 nm at post-treatment temperatures of 800 and 900 °C, respectively. The initial discharge capacities of the 0.6Li2MnO3·0.4LiCoO2 composite are 262, 267, 264, and 263 mAh g−1 when the post-treat temperatures of the powders are 650, 700, 800, and 900 °C, respectively. The discharge capacity of the composite powders post-treated at 900 °C abruptly decreases from 263 to 214 mAh g−1 by the seventh cycle and then slowly decreases to 198 mAh g−1 with increasing cycle number, up to 30.  相似文献   

17.
Nanostructured nickel-manganese oxides composite was prepared by the sol-gel and the chemistry deposition combination new route. The surface morphology and structure of the composite were characterized by scanning electron microscope and X-ray diffraction. The as-synthesized NiO/MnO2 samples exhibit higher surface area of 130-190 m2 g−1. Cyclic voltammetry and galvanostatic charge/discharge measurements were applied to investigate the electrochemical performance of the composite electrodes with different ratios of NiO/MnO2. When the mass ratio of MnO2 and NiO in composite material is 80:20, the specific capacitance value of NiO/MnO2 calculated from the cyclic voltammetry curves is 453 F g−1, for pure NiO and MnO2 are 209, 330 F g−1 in 6 mol L−1 KOH electrolyte and at scan rate of 10 mV s−1, respectively. The specific capacitance of NiO/MnO2 electrode is much larger than that of each pristine component. Moreover, the composite electrodes showed high power density and stable electrochemical properties.  相似文献   

18.
CaWO4 and SrWO4 nanostructures have been synthesized via a simple microemulsion-mediated route. With careful control of the fundamental experimental parameters including the concentration of reactants, the reaction time and the temperature, the products with different morphologies of dumbbell, coral, rod and dendrite have been obtained, respectively. The possible formation mechanism of these unique morphologies has been proposed based on surfactant self-assembly under different experimental conditions. The as-synthesized CaWO4 samples with various morphologies exhibit different photoluminescence properties. X-ray powder diffraction, transmission electron microscopy, field-emission scanning electron microscopy, and luminescence spectroscopy were used to characterize these products.  相似文献   

19.
Novel Bi2S3 hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. The hierarchical nanostructures exhibit a flower-like shape. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize the as-synthesized samples. Meanwhile, the effect of various experimental parameters including the concentration of reagents and reaction time on final product has been investigated. In our experiment, PVP plays an important role for the formation of the hierarchical nanostructures and the possible mechanism was proposed. In addition, Bi2S3 film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties, which may bring nontrivial functionalities and may have some promising applications in the future.  相似文献   

20.
Fe-doped TiO2 nanotube arrays have been prepared by the template-based liquid phase deposition method. Their morphologies, structures and optical properties were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and UV-vis absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of methylene blue under visible light. The UV-vis absorption spectra of the Fe-doped TiO2 nanotube arrays showed a red shift and an enhancement of the absorption in the visible region compared to the undoped sample. The Fe-doped TiO2 nanotube arrays exhibited good photocatalytic activities under visible light irradiation, and the optimum dopant amount was found to be 5.9 at% in our experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号