首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation and chemical leaching effects of a nonequilibrium Al0.6(Fe25Cu75)0.4 powder produced by rod milling is described. X-ray diffraction, transmission electron microscopy, differential scanning calorimetry and vibrating sample magnetometry were used to characterize both the as-milled and leached specimens. After 400 h of milling, only the bcc AlFe phase with an amorphous phase was detected in the XRD patterns. The crystallite size for the bcc AlFe phase (110) after 400 h of milling was about 5.3 nm. The peak temperature and the crystallization temperature of the as-milled powders were 448.7 and 428.0 °C, respectively. Al atoms leaching from the as-milled bcc AlFe powders in the L1 condition did not alter the diffraction pattern significantly, even though Al atoms had been removed. After the L1 specimen was annealed at 500 °C for 1 h, the bcc AlFe phase transformed to the fcc Cu, Fe, and CuFe2O4 phases. The peak widths of L1 and L2 specimens were similar, but became broader than that of the as-milled powder. The saturation magnetization decreased with increasing milling time, and a value of 10.4 emu/g was reached after 400 h of milling. After cooling the specimen from 750 °C, the magnetization slowly increased at approximately 491.4 °C, indicating that the bcc AlFe phase had transformed to the fcc Cu and Fe phases.  相似文献   

2.
Amorphization in the Al---C system by mechanical alloying   总被引:2,自引:0,他引:2  
Mechanical alloying of a powder mixture of elemental Al and graphite has been performed in a high-energy ball mill. The structural evolution has been characterized by X-ray diffraction and transmission electron microscopy. The carbide Al4C3 is first formed as an intermediate product. Further milling leads to destabilization of Al4C3. It is proposed that destabilization of Al4C3 is induced by the accumulated defects and the high pressure due to collision of the balls. Balling milling of the elemental Al---C powder mixture finally results in a f.c.c. solid solution with a carbon content up to 23 at%. Whereas an amorphous phase is formed in the composition range of 28–50 at% C.  相似文献   

3.
A research on fabrication of finegrained Al2O3 ceramic at lower sintering temperature was carried out.Al2O3 powder with 50 nm in diameter is compounded with 11.24%Al and 4.75% Fe(mass fraction) by high-energy ball-milling. AI is got from Al powder which is a component of the materials being milled and Fe from steel milling balls and milling jar during the milling. In this way, nearly no impurity is brought into the composite powder during milling. With hot pressing of the composite powder and pure Al2O3 powder, it is proved that Al2O3 powder can be densified at lower sintering temperature when the powder is compounded in this way. Al2OC and AlFe form during sintering process of the composite powder. With the reactive sintering and multiphase sintering mechanisms, finegrained Al2O3 ceramic is fabricated at low sintering temperature.  相似文献   

4.
High-energy dry ball-mill and post-anneal processing were applied to synthesize MgTiO3 and Mg2TiO4 single crystalline phases from the predetermined compositions of MgO–TiO2 powder mixtures. Also, the experiments were performed to show that it is possible to prepare MgAl2O4 single crystalline phase from the predetermined composition of MgO–Al2O3 powder mixture only by employing high-energy dry ball milling, i.e. without post-annealing the milled samples. In contrast, fully developed single crystalline powders of MgTiO3 and Mg2TiO4 were obtained after post-annealing the milled samples for 1 h at 900 and 1200 °C, respectively.  相似文献   

5.
The possibility of providing TiC–Al2O3 nanocomposite as a useful composite from low-cost raw materials has been investigated. Impure Ti chips were placed in a high energy ball mill with carbon black and aluminum powder and sampled after different times. XRD analysis showed that TiC has been synthesized after 10 h of milling. It could be observed from the width of XRD patterns’ peaks that the size of produced TiC crystallites is in the order of nanometer. In order to forming of TiC–Al2O3 composite, heat treatment was performed in different temperatures. Investigations have revealed that formation temperature of TiC as the dominant phase decreased for the milled specimens during heat treatment, also nanocrystalline TiC–Al2O3 composite was formed in this situation. Furthermore milling led to increase of strain and decrease of TiC lattice parameter while during heat treatment nanocrystalline grains grow up and strain decreases.  相似文献   

6.
In this investigation, MoSi2 intermetallic compound has been synthesized by reducing of MoO3/SiO2 powder mixtures by Al and carbon via mechanical alloying (MA). Powder mixtures were ball milled for 0–100 h and structural evolutions have been monitored by X-ray diffraction. In the Al system, both β-MoSi2 (high temperature phase) and -MoSi2 (low temperature phase) were obtained after 3 h of milling and after 70 h of milling the β-phase transformed to -phase. The crystallite size of -MoSi2 and Al2O3 after milling for 100 h was 12 and 17 nm, respectively. In reducing with carbon, two different compositions with nominal carbon content of 13.7 and 24 wt.% were used that in both compositions, -MoSi2 forms during 10 h of milling. Higher carbon content increases the amount of MoSi2.  相似文献   

7.
Mixtures of W and B_(13) C_2 powders were mechanically milled and subsequently annealed at 900–1200 °C. It is found that amorphous W–B–C alloy formed as the mixtures were milled for 20–80 h. After annealing the 80 h-milled mixtures at 900–950 °C, solid solutions of C and/or B in tungsten [W(B, C)], C in tungsten boride [W_2 B(C) or WB(C)]formed by the crystallization of amorphous W–B–C. The formation temperature of W_2 B(C) and WB(C) is lower than that of W_2 B and WB reported previously. As the 80 h-milled mixtures were annealed at 1200 °C, W reacted with amorphous W–B–C completely to form WB and W_2B_5 or W_2B_5 instead of the solid solutions of C in tungsten borides, which is determined by the mole ratio of W to B_(13) C_2. The formation mechanisms of the W_2 B(C) and WB(C) solid solutions as well as phase transition rules of the mixtures at annealing temperature and mole ratio were also investigated using first-principle calculation.  相似文献   

8.
The solidification of the alloy ASTM F-75 ends with sigma phase formation instead of M7C3 carbide as presumed from literature. The M23C6 carbide observed in cast specimens precipitates from the sigma phase (σ) according to the global reaction σ+C→M23C6 over the range 1403–1303 K. Additionally, lamellar carbides appear below 1262 K for cooling rates lower than 35 K/min.  相似文献   

9.
利用激光熔覆技术在GCr15 钢表面制备Fe/NiCr-Cr3C2复合涂层,研究不同NiCr-Cr3C2含量对铁基涂层微观组织和磨损性能的影响。结果表明:随NiCr-Cr3C2含量的增多,复合涂层显微组织逐渐细化,在铁基合金里掺入NiCr-Cr3C2金属陶瓷粉末导致复合涂层里残留奥氏体含量增多,α-Fe相含量减少,截面硬度显著降低。当加入10%NiCr-Cr3C2时,复合涂层中出现较多的Cr3C2和Cr23C6硬质相,同时磨痕表面生成了具有减摩作用的氧化产物,从而降低了磨耗和摩擦阻力,使涂层表现出最佳的耐磨性能。  相似文献   

10.
Mechanical milling behavior of Mo-Si-Fe powders was investigated u sing XRD, SEM and TEM techniques. The mixtures of elemental molybdenum (>99%), s ilicon (>99%) and iron (>98%) powders with a stoichiometry of Mo5-xFe xSi3 (x=0.5, 1, 2) were milled in a planetary mill for up to 195 h. For all three powder mixt ures, high-energy milling of 60h led to formation of the Mo(Fe, Si) supers aturated solid solution (Moss); and to a remarkable expansion of the solub ility of Fe, Si in molybdenum. The transformation of Moss to an amorphous phase was identified after longer time milling. In the milling process, the grain size of Mo (Fe, Si) decreased gradually and the internal stress increased linearly. After 40 h milling, the grain size was reduced to about 11 nm. SEM analysis of milled powders showed that the particle size increased initially with milling time. After 195 h milling, particles exhibited a spherical morphology and the particle size were reduced to about 100 nm.  相似文献   

11.
1 INTRODUCTIONTungsten basedheavyalloyisauniquematerialduetothecombinationofitshighdensity ,highstrength ,highductility ,highconductivityandgoodmachinability[1,2 ].Itiswidelyusedforradioactiveshielding,inertialandmilitary penetratingapplica tions.FullydenseW N…  相似文献   

12.
The effect of high-energy ball milling and subsequent annealing on the mixture of MgO and Nb2O5 has been investigated. X-ray diffraction (XRD) measurement indicates that an amorphous phase is produced after milling for 5 h, while traces of MgNb2O6 crystallized from the amorphous phase during prolonged milling. Significant crystallization of MgNb2O6 from the amorphous state is observed after annealing at 500 °C, while the reaction of the remaining MgO and Nb2O5 does not take place at this temperature. Single phase MgNb2O6 can be achieved for all the milled samples at 700 °C. No significant grain growth is observed when the milled powders were annealed at temperature below 900 °C. Almost fully dense MgNb2O6 ceramics are obtained after annealing at 1100 °C from the as-milled powders.  相似文献   

13.
《Intermetallics》2002,10(4):371-376
Intermetallic matrix composites reinforced with particles such as TiC have attracted a great deal of attention over the past few years. In the present study, the mechanical alloying process followed by hot-pressing consolidation was used to produce FeAl–30%TiC nanocomposite. Since the reduction of grain size to the nanometer scale improves mechanical properties of materials, this composite may be attractive for structural applications. An elemental powder mixture of Al35Fe35Ti15C15 (in at.%) was milled in a high-energy ball mill. The phase transformations in the powder during milling were studied with the use of X-ray diffraction (XRD). Transmission electron microscopy and differential scanning calorimetry were used for examining the microstructure and the thermal stability of the milling product. The results obtained show that high-energy ball milling as performed in this work leads to the formation of a bcc phase identified as the Fe(Al) solid solution and a fcc phase identified as TiC, and that both phases are nanocrystalline. Subsequently, the milled powder was sintered at 750 °C under pressure of 4 GPa. The XRD investigations of the consolidated pellet revealed that after sintering, the material remained nanocrystalline and that there were no phase changes, except for the ordering of Fe(Al), i.e. formation of FeAl intermetallic compound, during the sintering process. The average hardness of the obtained nanocomposite is 1287 HV0.2 (12.6 GPa) and its density is 98% of the theoretical value.  相似文献   

14.
In the present study,(Fe,Cr)_3Al/20 vol% Al_2O_3 nanocomposite was prepared through mechanochemical reactions during ball milling and successfully bulked using a combination of cold isostatic press and sintering at 1400 ℃ for 1 h. Two processing approaches were utilized to produce(Fe,Cr)_3Al/Al_2O_3 nanocomposite: The first was milling of Fe, Cr,Al and Fe_2O_3, while the second one was milling of Fe, Cr, Al and Cr_2O_3, both in stoichiometric condition, to synthesize(Fe,Cr)_3Al/20 vol% Al_2O_3. Structural changes of powder particles during mechanical alloying were studied by X-ray diffraction. The microstructure and the morphology of powder particles and bulk samples were also studied by scanning electron microscopy and transmission electron microscopy. Microstructural analysis showed that mechanochemical reactions took place during milling, and nanometric Al_2O_3 was uniformly distributed in the matrix. The results also showed that the second approach required a considerably higher milling time to produce(Fe,Cr)_3Al/Al_2O_3 nanocomposite, as compared to the first one. For this reason, bulk samples were produced from the synthesized nanocomposite in the first approach. The microstructure of the sintered samples consisted of a network structure of(Fe,Cr)_3Al and Al_2O_3 phases with superior mechanical properties.  相似文献   

15.
Z.J. Lin  L.F. He  J.Y. Wang  M.S. Li  Y.W. Bao  Y.C. Zhou   《Acta Materialia》2008,56(9):2022-2031
Transmission electron microscopy characterizations and elastic properties of two quaternary carbides, i.e. Zr2(Al(Si))4C5 and Zr3(Al(Si))4C6 are reported. The space group and atomic-scale microstructures of both compounds were determined using a combination of selected area electron diffraction, convergent beam electron diffraction, high-resolution transmission electron microscopy and Z-contrast scanning transmission electron microscopy. In addition, the combined experimental and theoretical studies on elastic properties for Zr2(Al(Si))4C5 are presented. A full set of second-order elastic constants, bulk modulus, shear modulus, and Young’s modulus were calculated using first-principles calculations. Both experimental and theoretical works demonstrated that quaternary Zr–Al–Si–C ceramics possess close elastic properties to ZrC. Furthermore, Zr2(Al(Si))4C5 retained a high Young’s modulus up to about 1580 °C, which can be attributed to its comparable activation energy of lattice drag process to that of ZrC.  相似文献   

16.
Yin-Chih Lin 《Acta Materialia》1999,47(18):4665-4681
Microstructures and superparamagnetic properties in aged-hardened Fe–9%Al–30%Mn– (x)C,Si alloys, resulting from overaging at a temperature of 823 K for 48 h to 313 days, have been investigated by transmission electron microscopy (TEM), X-ray diffraction patterns, and vibrating sample magnetometry (VSM). The results reveal that the precipitate κ-phase [(Fe,Mn)3AlC] decomposition in this alloy, overaged at 823 K for one week, resulted from two separate mechanisms: (1) wetting of the antiphase boundary segment (APBs) of D03 [(Fe/Mn)3Al] domains by the B2 [(Fe/Mn)Al] phase; and (2) precipitation of the B2 [(Fe/Mn)Al] phase within the domain. A superparamagnetic behaviour was discovered when the alloy was overaged at 823 K for ≈120–313 days. The super-soft magnetic property was mainly attributable to the ferromagnetic spinel-ordered (B2 [(Fe/Mn)Al]+D03 [(Fe/Mn)3Al]) phases and ordered B2 with monoclinic ′Mn structures.  相似文献   

17.
While processing Y2O3 dispersed γ-TiAl, Y2O3 particles which dissolved during hot isostatic pressing (HIP’ing) were found to precipitate during the heat treatment in the form of a mixed Al–Y oxide. To understand the chemical reaction that occurs between Y2O3 and γ-TiAl during the heat treatment cycle, a powder mixture comprising of γ-TiAl and 10 wt.% Y2O3 was mechanically alloyed (MA’d) for 8 h and the milled powder was subjected to differential thermal analysis (DTA) at 1150 °C prior to analyzing it using X-ray diffraction technique. The present study clearly demonstrates that aluminum in the combined form either as γ-TiAl or Al2O3 reacts in a similar manner with Y2O3 when milled and heat treated at 1150 °C. In either case there is formation of Al2Y4O9 (2Y2O3.Al2O3).  相似文献   

18.
Rapidly solidified Ni–Al–Hf alloys of ternary eutectic compositions were studied by X-ray diffractometry, transmission electron microscopy and differential scanning calorimetry. Ni66Hf20Al14 amorphous alloy with relatively high Hf/Al ratio showed high tensile strength of 1600 MPa and high thermal stability against crystallization. The formation of a nanoscale metastable intermetallic compound having a body-centered cubic lattice with a lattice parameter of a=1.22 nm was observed in the alloys with higher Al than Hf content. The transformation of an amorphous+metastable cubic mixture to AlNi3 produces AlNi3 of the same composition as the AlNi3 phase formed on rapid solidification. Pm m AlNi3 phase can dissolve up to 11 at.% Hf.  相似文献   

19.
Al and Zn elemental powder mixtures were subjected to high-energy milling to produce Al–14 wt% Zn alloy. The milled powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and microhardness measurement. The Al and Zn grain sizes were estimated from broadening of XRD peaks using Williamson–Hall formula. The results showed that in early stage of milling the solubility of Zn in Al is extended compared to the equilibrium value which is accompanied by a decrease in lattice parameter of the Al matrix. However, after longer milling times, decomposition of Al(Zn) supersaturated solid solution appeared to occur leading to an increase in Al lattice parameter and also a decrease in hardness value of as-milled powder. The final product of milling includes both Al and Zn phases having a grain size of 40 nm and 20 nm, respectively.  相似文献   

20.
The tungsten heavy alloy with the composition of 76.6W–17.3Ni–6.1Fe in atom percent was mechanically alloyed (MA) from the elemental powders of W, Ni and Fe. Nanocrystalline supersaturated solid solutions and amorphous phase were obtained during MA. Phase evolution, grain size and lattice distortion of these powders were determined and discussed. A thermodynamic model was developed based on semi-experimental theory of Miedema to calculate the driving force for phase evolution. The thermodynamic analysis showed that there is no chemical driving force to form the solid solution and the amorphous phase. The effect of the work of milling on the amorphization during MA was discussed and the model of multilayer amorphization during MA was applied to illustrate the feasibility of amorphization of powder with neither ΔHmix0 nor DBDA. The driving force for amorphization is provided not by the negative heat of mixing or the stored energy in the grain boundaries but by the sharp concentration gradients in this system. Amorphization is mechanically driven and not by the negative heat of mixing. Crystallization is suppressed by sharp concentration gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号