首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silicon nitride materials containing 1–5 wt% of hexagonal boron nitride (micro-sized or nano-sized) were prepared by hot-isostatic pressing at 1700 °C for 3 h. Effect of hBN content on microstructure, mechanical and tribological properties has been investigated. As expected, the increase of hBN content resulted in a sharp decrease of hardness, elastic modulus and bending strength of Si3N4/BN composites. In addition, the fracture toughness of Si3N4/micro BN composites was enhanced comparing to monolithic Si3N4 because of toughening mechanisms in the form of crack deflection, crack branching and pullout of large BN platelets. The friction coefficient was not influenced by BN addition to Si3N4/BN ceramics. An improvement of wear resistance (one order of magnitude) was observed when the micro hBN powder was added to Si3N4 matrix. Mechanical wear (micro-failure) and humidity-driven tribochemical reaction were found as main wear mechanisms in all studied materials.  相似文献   

2.
Hexagonal boron nitride (h-BN) with low dielectric loss and high temperature resistance opens up new opportunities for the preparation of polymer-derived SiCN ceramics (PDCs-SiCN ceramics) with excellent mechanical and dielectric properties. BN-containing polymer-derived SiCN composite ceramics (PDCs-SiCN(BN) composite ceramics) with different BN content were prepared via a pyrolysis process of ball-milling-blended Polyvinylsilazane/boron nitride (PVSZ/BN) precursors. BN is stably embedded in the SiCN tissue and tightly bound with it. The appropriate content of BN greatly improves the mechanical properties of PDCs-SiCN ceramics, as BN reduces the number of pores and prevents crack expansion. Additionally, BN is also beneficial in lowering the dielectric loss of PDCs-SiCN ceramics because of the weakened polarization relaxation behavior. PDCs-SiCN (BN) composite ceramics have optimal mechanical and dielectric properties when the BN content is 1 wt%. The flexural strength, flexural modulus and compression strength of PDCs-SiCN(BN) composite ceramics with 1 wt% BN doping content were 189.37 MPa, 46.38 GPa, and 399.02 MPa, respectively. Its average dielectric loss (tanδε) at 12.4-18 GHz is 0.0049.  相似文献   

3.
Bismaleimide‐triazine (BT) resin/hexagonal boron nitride (h‐BN) composites are prepared, and the effects of h‐BN content on the thermal and dielectric properties are studied in the view of structure–property relationship. It is found that the introduction of the BN in the BT resin dramatically improve the thermal conductivity of BT resin. The thermal conductivity of the composites is up to 1.11 W/m.K, with an h‐BN concentration of 50 wt %, which is increased by six times compared with the pure BT resin. The BT resin/h‐BN composites also exhibit excellent thermal properties, with the glass transition temperatures above 200°C, and thermal decomposition temperatures over 390°C. Moreover, the composites possess good dielectric properties. Their dielectric constant and loss tangent (tan δ) are less than 4.5 and 0.015, respectively. The results indicate that the BT resin/h‐BN composites are promising as efficient heat‐releasing materials in the high‐density electronic packaging technology. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Cubic BN was synthesized under high-temperature and -pressure conditions from BN powder formed by pressure pyrolysis of borazine below 700°C and 100 MPa. The conversion of BN powder to cubic BN was strongly influenced by the residual hydrogen identified by the BH/BN ratio of IR absorption band. The activation energy for cubic BN synthesis from BN powder-20 mol% AIN was 46 kJ/mol, when the starting BN was synthesized at 250°C. A mixture of BN powder and cubic BN particles was converted to cubic BN in a 100% yield by heat treatment at 1800°C and 6.5 GPa without any catalyst. The presence of cubic BN particles does enhance the conversion to cubic BN from BN powder. The energy required for the transformation of starting BN to cubic BN in the presence of cubic BN seed was 355 kJ/mol.  相似文献   

5.
Due to the rapid development of multifunctional and miniaturized electronic devices, the demand for polymer composites with mechanical properties, high-thermal conductivity, and dielectric properties is increasing. Therefore, the heat dissipation capacity of the composite must be improved. To solve this problem, we report a glass fabric (GF)/boron nitride (BN) network with a highly thermally conductive hetero-structured formed using polyvinyl alcohol (PVA) as an adhesive. The GF and BN are furtherly modified by (3-aminopropyl)triethoxysilane (APTES) for better thermal conductivity enhancement. When the BN content is 30%, the thermal diffusion coefficient and thermal conductivity of obtained PVA-mBN@mGF (PBG) are 2.843 mm2/s and 1.394 W/(m K), respectively. Epoxy (EP) resin is then introduced to prepare PBG/mBN/EP laminated composites via the hot pressing method as applied as thermal conductive composites. A highest thermal conductivity of 0.67 W/(m K) of PBG/mBN/EP laminated composites is obtained, three times higher than that of pure EP. In addition, the PBG/mBN/EP laminated composites also present favorable mechanical, electrically insulating, and dielectric properties.  相似文献   

6.
The synergistic effects of boron nitride (BN) powder and die on the rheology and processability of metallocene‐catalyzed low density polyethylene (mLDPE) were investigated. The processability in the extrusion process is closely related to the interfacial properties between the polymer melts and the die wall. BN powder was added to mLDPE to reduce the friction coefficient and surface energy. Adding 0.5 wt% BN powder to mLDPE was very effective in improving the processability and the extrudate appearance. To study the effect of die surface property, three different dies were applied in capillary extrusion. One was conventional tungsten carbide (TC) die, and the others were hot‐pressed BN (hpBN) die and hot‐pressed BN composite (hpBNC) die. The applications of these BN dies were quite effective in delaying surface melt fracture (sharkskin) and postponing gross melt fracture to higher shear rate compared to the TC die. These improvements result from the fact that BN dies reduce the wall shear stress significantly and promote slip. The synergistic effect of processability could be obtained when both BN powder and hpBN die were used together.  相似文献   

7.
The feasibility of fabricating a BN matrix/fiber interphase of SiC/SiC composites via electrophoresis deposition (EPD) was investigated based on the simplicity and non-destructiveness of the process and the excellent interfacial modification effects of BN. The BN suspension and SiC fiber surface properties were both adjusted to generate suitable conditions for the EPD process of the BN interphase. Next, the deposition dynamics and mechanism were studied under different deposition voltages and time, and the relationship between the deposition morphology of the BN interphase and mechanical properties of the fabricated mini SiC/SiC composites were also discussed. After oxidation at high temperature (600–1000 ℃), the mechanical properties of the mini SiC/SiC composites were studied to verify the oxidation resistance effect of the EPD-deposited BN interphase, whose oxidation resistance mechanism was briefly analyzed as well.  相似文献   

8.
Formation of boron nitride by reaction of boric oxide with carbon and nitrogen was studied. It was found from the results of experiments conducted by holding B2O3-activated C mixtures under a flowing nitrogen atmosphere that formation of boron nitride was complete in 120 min at 1500 °C. After cleaning the reaction product from the ash of the activated carbon and from the unreacted B2O3 pure BN powder was obtained. B4C was found to exist as an intermediate species in the reaction products of the experiments in which BN formation was not complete. The results of experiments conducted with the objective of gaining an insight into the reaction mechanism by using different geometrical arrangements show that liquid B2O3 and solid carbon need not be in contact in the formation of BN from B2O3, C and N2 and indicate that the reaction proceeds through a gaseous boron containing species which is most probably B2O3(g).  相似文献   

9.
A scalable strategy to fabricate thermally conductive but electrically insulating polymer composites was urgently required in various applications including heat exchangers and electronic packages. In this work, multilayered ultrahigh molecular weight polyethylene (UHMWPE)/natural graphite (NG)/boron nitride (BN) composites were prepared by hot compressing the UHMWPE/NG layers and UHMWPE/BN layers alternately. Taking advantage of the internal properties of NG and BN fillers, the UHMWPE/NG layers played a decisive role in enhancing thermal conductivity (TC), while the UHMWPE/BN layers effectively blocked the electrically conductive pathways without affecting the thermal conductive pathways. The in-plane TC, electrical insulation, and heat spreading ability of multilayered UHMWPE/NG/BN composites increased with the increasing layer numbers. At the total fillers loading of 40 wt%, the in-plane TC of multilayered UHMWPE/NG/BN composites with nine layers was markedly improved to 6.319 Wm−1 K−1, outperforming UHMWPE/BN (4.735 Wm−1 K−1) and pure UHMWPE (0.305 Wm−1 K−1) by 33.45% and 1971.80%, respectively. Meanwhile, the UHMWPE/NG/BN composites still maintained an excellent electrically insulating property (volume resistance~5.40×1014 Ω cm ; breakdown voltage~1.52 kV/mm). Moreover, the multilayered UHMWPE/NG/BN composites also exhibited surpassing heat dissipation capability and mechanical properties. Our results provided an effective method to fabricate highly thermal conductive and electrical insulating composites.  相似文献   

10.
《Ceramics International》2023,49(2):2073-2080
Based on good thermomechanical and electromagnetic properties of silicon nitride (Si3N4), barium aluminosilicate (BaO–BaTiO3–SiO2 or BAS), and boron nitride (BN), a novel combination of Si3N4/BAS/BN composites was fabricated by spark plasma sintering (SPS) after traditional powder mixing process. The effect of different amounts of BN (3–9 wt%) on the mechanical properties of composite was studied. The phases were observed by X-ray diffraction, and the microstructures were identified by scanning electron microscopy (SEM). The optimal sample is the one containing 3 wt% of BN and is sintered under a final pressure of 50 MPa. This sample has a hardness of 9.03 GPa, a flexural strength of 418.75 MPa, an elastic modulus of 934.46 MPa, and a loss tangent of less than 0.002 in 38% of the X-band frequencies. The optimal sample thickness was determined via the Nicolson-Ross-Weir (NRW) technique considering the mechanical strength limits.  相似文献   

11.
Coal tar pitch-based coke power was heat-treated with B2O3 using an Acheson furnace. The heat-treated coke powder contained nitrogen and oxygen probably derived from BN and B2O3, respectively, and exhibited a large irreversible capacity in the first charge-discharge (lithium dope-undope) cycle. The large irreversible capacity was decreased not by the decomposition of BN or B2O3 but drastically by the increase of dissolved boron concentration. The discharge capacity also correlated well with the concentration of dissolved boron.  相似文献   

12.
Hexagonal boron nitride (BN) was synthesized through the carbothermic reduction reaction (CRR) of boric acid using lactose as a carbon source under the nitrogen atmosphere at 1500°C for 3 hours. The boron/carbon (B/C) molar ratio was controlled during the CRR, and the produced samples were investigated by XRD diffraction pattern, FTIR analysis, and Raman spectra. Boron carbide (B4C) was formed in samples that have a higher carbon content, in addition to boron nitride. While boron nitride pure sample was produced from lower carbon content samples. Formation of B4C was found to depend on the B/C molar ratio. The morphology of the produced powder was also investigated by SEM and TEM, which revealed that the samples consist of nanoneedles of BN and hexagonal particles of B4C. The vapor‐solid (VS) reaction mechanism was processed greatly with increasing boron amount, producing boron nitride nanoneedles, which compete with the liquid‐solid (LS) reaction mechanism. The physicochemical properties of the produced samples were studied by DTA, UV, PL, and AC impedance measurements, and revealed that the samples are promising to many proper applications.  相似文献   

13.
UHMWPE/LLDPE/BN复合塑料导热性能研究   总被引:1,自引:0,他引:1  
将氮化硼(BN)粒子和超高分子量聚乙烯/线性低密度聚乙烯(UHMWPE/LLDPE)分别用熔融辊炼法和粉末混合法制备导热聚乙烯塑料。研究了制备方式、填料含量及偶联剂对填料分散状态及体系热导率、热阻的影响。研究结果表明,粉末法制备的塑料由于BN的高分散效果使得体系的导热性能明显高于熔融辊炼法制备的体系,热导率随填料含量而增加,偶联剂处理有利于提高塑料的热导率。在UHMWPE/LLDPE/BN中添加少量氧化铝短纤维有助于提高体系的力学强度、韧性及热导率。  相似文献   

14.
The addition-type liquid silicone rubber (ALSR) co-filled with spheroidal Al2O3 and flaky BN was prepared by the mechanical blending and hot press methods to enhance the thermal, electrical, and mechanical properties for industrial applications. Morphologies of ALSR composites were observed by scanning electron microscopy (SEM). It was found that the interaction and dispersion state of fillers in the ALSR matrix were improved by the introduction of BN sheets. Thermal, electrical, and mechanical performances of the ALSR composites were also investigated in this work. The result indicated that the thermal conductivity of ALSR can reach 0.64 W m−1 K−1 at the loading of 20 wt% Al2O3/20 wt% BN, which is 3.76 times higher than that of pure ALSR. The addition of Al2O3 particles and BN sheets also improve the thermal stability of ALSR composites. Moreover, pure ALSR and ALSR composites showed relatively lower dielectric permittivity (1.9–3.1) and dielectric loss factor (<0.001) at the frequency of 103 Hz. The insulation properties including volume resistivity and breakdown strength were improved by the introduction of flaky BN in the ALSR matrix. The volume resistivity and characteristic breakdown strength E0 are 6.68 × 1015 Ω m and 93 kV/mm, respectively, at the loading of 20 wt% Al2O3/20 wt% BN. In addition, the mechanical characteristics including elongation at break and tensile strength of ALSR composites were also enhanced by co-filled fillers. The combination of these improved performances makes the co-filled ALSR composites attractive in the field of electrical and electronic applications.  相似文献   

15.
Nanocomposites based on molybdenum disulfide (MoS2), hexagonal boron nitride (h‐BN) and hybrid MoS2/h‐BN nanofillers with different wt % in elastomeric polyurethane (PU) were studied with respect to their microstructure, thermal and mechanical properties. Tensile tests showed increases up to 80% in Young`s modulus for both h‐BN and hybrid MoS2/h‐BN composites. These results agree with dynamic mechanical analysis tests, which confirm an increase of up to 106% in storage modulus for hybrid MoS2/h‐BN with 0.5 wt % content. When the hybrid MoS2/h‐BN nanofillers were incorporated into the polymeric matrix, increases up to 102% in crosslink density were observed, indicating that strong interactions between the hybrid nanofillers and PU were established. However, the most important synergistic effect between the mixture of MoS2 and h‐BN nanoadditives was the increase of up to 752% in thermal conductivity with respect to neat polymer. Therefore, hybrid composites based in two‐dimensional MoS2/h‐BN nanofillers with multifunctional attributes can be applied in advanced polymeric materials that require high mechanical and thermal performance. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46560.  相似文献   

16.
The selective laser sintering (SLS) is one of the most important 3D-printing technologies. However, the challenges in SLS could be in the limited high material cost and single material performance. Development of high-performance and multifunctional copowders suitable for SLS is of great importance. Here, polyamide 12 (PA12)/boron nitride (BN) thermal conductive copowders suitable for SLS were successfully prepared through solid state shear milling (S3M) technology in combination with cryogenic pulverization technology. The particle size, morphology, grafting reaction between PA12 and BN, rheology behavior, and coalescence behavior of the obtained PA12/BN copowders were carefully investigated. The optimal amount of silica flow additive (0.5 wt %) was determined to achieve the good powder flowability. Under the optimum 3D-printing conditions, the fabrication of parts with high BN loading could be achieved. When BN content was at 40 wt %, the flexural strength could reach 10.6 MPa and the thermal conductivity could reach 0.55 W/m·k, 77% higher than that of pure PA12. After treated with phenolic epoxy resin, the tensile strength and flexural strength of the printed parts with 40 wt % BN loading could reach 14.2 and 25.6 MPa, which were 130 and 115% higher than those of the untreated 3D-printed parts, respectively. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48766.  相似文献   

17.
Steven Seghi  James Lee 《Carbon》2005,43(10):2035-2043
This paper describes the fabrication of high density (ρ ∼ 1.75 g/cc) composites containing a hybrid (carbon and boron nitride), or complete boron nitride matrix. The composites were reinforced with either chopped or 3D needled carbon fibers. The boron nitride was introduced via liquid infiltration of a borazine oligomer that can exhibit liquid crystallinity. The processing scheme was developed for the chopped carbon fiber/boron nitride matrix composites (C/BN) and later applied to the 3D carbon fiber reinforced/boron nitride matrix composites (3D C/BN). The hybrid matrix composites were produced by infiltrating the borazine oligomer into a low density 3D needled C/C composite to yield 3D C/C-BN. In addition to achieving high densities, the processing scheme yielded d002 spacings of 3.35 Å, which afforded boron nitride with excellent hydrolytic stability. The friction and wear properties of the composites were explored over the entire energy spectrum for aircraft braking using an inertial brake dynamometer. The C/BN composites outperformed both the previously reported C/C-BN and chopped fiber reinforced C/C. The high density 3D C/BN performed as well as both the 3D C/C and the C/BN. The 3D C/C-BN provided outstanding wear resistance, incurring nearly zero wear across the entire testing spectrum. The coefficient of friction was relatively stable with respect to energy level, varying from 0.2 to 0.3.  相似文献   

18.
In this study, three-dimensional silicon nitride fiber-reinforced silicon nitride matrix (3D Si3N4f/BN/Si3N4) composites with a boron nitride (BN) interphase were fabricated through chemical vapor infiltration. Through comparing the changes of microstructure, thermal residual stress, interface bonding state, and interface microstructure evolution of composites before and after heat treatment, the evolution of mechanical and dielectric properties of Si3N4f/BN/Si3N4 composites was analyzed. Flexural strength and fracture toughness of composites acquired the maximum values of 96 ± 5 MPa and 3.8 ± 0.1 MPa·m1/2, respectively, after heat treatment at 800 °C; however, these values were maintained at 83 ± 6 MPa and 3.1 ± 0.2 MPa·m1/2 after heat treatment at 1200 °C, respectively. The relatively low mechanical properties are mainly attributed to the strong interface bonding caused by interfacial diffusion of oxygen and subsequent interfacial reaction and generation of turbostratic BN interphase with relatively high fracture energy. Moreover, the Si3N4f/BN/Si3N4 composites also displayed moderate dielectric constant and dielectric loss fluctuating irregularly around 5.0 and 0.04 before and after heat treatment, respectively. They were mainly determined based on the intrinsic properties of materials system and complex microstructure of composites.  相似文献   

19.
Three SiBCN monoliths: carbon‐lean, ‐moderate, and ‐rich monoliths with the same Si/B/N mole ratio have been prepared by mechanical alloying followed by reactive hot pressing. The role of carbon on phase composition, microstructural evolution, and mechanical properties were investigated. XRD and TEM investigations showed that the as‐sintered monoliths contain several components: Si metal, SiC, t‐BN, and BN(C), strongly correlated with the carbon content. TEM results also revealed that BN(C) enwraps SiC grain forming capsule‐like structure. Raman, NMR, and HRTEM studies suggested that the structural evolution within the BN(C) areas includes the graphitization of amorphous carbon and the lateral growth of BN(C), accompanied by an increase in the defect concentration. The defects form within BN (0002) basal planes resulting from the disordered carbon imbedded, which in turn determines the morphological evolution of BN(C). The ill‐developed microstructures for carbon‐lean monoliths and the excessive carbon in carbon‐rich ones both deteriorate their mechanical properties and densities.  相似文献   

20.
The effects of boron nitride (BN) and aluminum nitride fillers on polyamide 6 (PA6) hybrid polymer composites were investigated. In particular, the thermal and electrical conductivity, thermal transition, thermal degradation, mechanical and morphological properties and chemical bonds characteristic of the materials with crystal structure of BN and aluminum nitride (AlN) filled PA6 prepared at different concentrations were characterized. Thermal conductivity of hybrid systems revealed a 1.6-fold gain compared to neat PA6. The highest thermal conductivity value was obtained for the composite containing 50 vol% additives (1.040 W/m K). A slight improvement in electrical conductive properties of composites appears and the highest value was obtained for the 50 vol% filled composite with only an increase by 3%. The microstructure of these composites revealed a homogeneous dispersion of AlN and BN additives in PA6 matrix. For all composites, one visible melting peak around 220°C related to the α-form crystals of PA6 was detected in correlation with the X-ray diffraction results. An improved thermal stability was obtained for 10 vol% AlN/BN filled PA6 composite (from 405.41°C to 409.68°C). The tensile strength results of all composites were found to be approximately 22% lower than pure PA6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号