首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In several applications, data are collected in the frequency (Fourier) domain non-uniformly, either by design or as a consequence of inexact measurements. The two major bottlenecks for image reconstruction from non-uniform Fourier data are (i) there is no obvious way to perform the numerical approximation, as the non-uniform Fourier data is not amenable to fast transform techniques and resampling the data first to uniform spacing is often neither accurate or robust; and (ii) the Gibbs phenomenon is apparent when the underlying function (image) is piecewise smooth, an occurrence in nearly every application. Recent investigations suggest that it may be useful to view the non-uniform Fourier samples as Fourier frame coefficients when designing reconstruction algorithms that attempt to mitigate either of these fundamental problems. The inverse polynomial reconstruction method (IPRM) was developed to resolve the Gibbs phenomenon in the reconstruction of piecewise analytic functions from spectral data, notably Fourier data. This paper demonstrates that the IPRM is also suitable for approximating the finite inverse Fourier frame operator as a projection onto the weighted \(L_2\) space of orthogonal polynomials. Moreover, the IPRM can also be used to remove the Gibbs phenomenon from the Fourier frame approximation when the underlying function is piecewise smooth. The one-dimensional numerical results presented here demonstrate that using the IPRM in this way yields a robust, stable, and accurate approximation from non-uniform Fourier data.  相似文献   

2.
Consider a piecewise smooth function for which the (pseudo-)spectral coefficients are given. It is well known that while spectral partial sums yield exponentially convergent approximations for smooth functions, the results for piecewise smooth functions are poor, with spurious oscillations developing near the discontinuities and a much reduced overall convergence rate. This behavior, known as the Gibbs phenomenon, is considered as one of the major drawbacks in the application of spectral methods. Various types of reconstruction methods developed for the recovery of piecewise smooth functions have met with varying degrees of success. The Gegenbauer reconstruction method, originally proposed by Gottlieb et al. has the particularly impressive ability to reconstruct piecewise analytic functions with exponential convergence up to the points of discontinuity. However, it has been sharply criticized for its high cost and susceptibility to round-off error. In this paper, a new approach to Gegenbauer reconstruction is considered, resulting in a reconstruction method that is less computationally intensive and costly, yet still enjoys superior convergence. The idea is to create a procedure that combines the well known exponential filtering method in smooth regions away from the discontinuities with the Gegenbauer reconstruction method in regions close to the discontinuities. This hybrid approach benefits from both the simplicity of exponential filtering and the high resolution properties of the Gegenbauer reconstruction method. Additionally, a new way of computing the Gegenbauer coefficients from Jacobian polynomial expansions is introduced that is both more cost effective and less prone to round-off errors.  相似文献   

3.
The Gegenbauer reconstruction method has been successfully implemented to reconstruct piecewise smooth functions by both reducing the effects of the Gibbs phenomenon and maintaining high resolution in its approximation. However, it has been noticed in some applications that the method fails to converge. This paper shows that the lack of convergence results from both poor choices of the parameters associated with the method, as well as numerical round off error. The Gegenbauer polynomials can have very large amplitudes, particularly near the endpoints x=±1, and hence the approximation requires that the corresponding computed Gegenbauer coefficients be extremely small to obtain spectral convergence. As is demonstrated here, numerical round off error interferes with the ability of the computed coefficients to decay properly, and hence affects the method's overall convergence. This paper addresses both parameter optimization and reduction of the round off error for the Gegenbauer reconstruction method, and constructs a viable black box method for choosing parameters that guarantee both theoretical and numerical convergence, even at the jump discontinuities. Validation of the Gegenbauer reconstruction method through a-posteriori estimates is also provided.  相似文献   

4.
Methods for the evaluation of spline functions for digital filtering in data processing systems are developed. Basis polynomials of general form and basis discrete orthogonal polynomials are considered. Computations are organized by solving constrained optimization problems. Recurrences for the system of normalized discrete orthogonal polynomials and their derivatives are obtained. The proposed spline functions on discrete orthogonal polynomials reduce the computational cost and approximation errors compared with the case of general polynomials. The results of the statistical simulation of the application of spline functions based on discrete orthogonal polynomials in digital filtering problems are presented.  相似文献   

5.
Reducing the Effects of Noise in Image Reconstruction   总被引:1,自引:1,他引:0  
Fourier spectral methods have proven to be powerful tools that are frequently employed in image reconstruction. However, since images can be typically viewed as piecewise smooth functions, the Gibbs phenomenon often hinders accurate reconstruction. Recently, numerical edge detection and reconstruction methods have been developed that effectively reduce the Gibbs oscillations while maintaining high resolution accuracy at the edges. While the Gibbs phenomenon is a standard obstacle for the recovery of all piecewise smooth functions, in many image reconstruction problems there is the additional impediment of random noise existing within the spectral data. This paper addresses the issue of noise in image reconstruction and its effects on the ability to locate the edges and recover the image. The resulting numerical method not only recovers piecewise smooth functions with very high accuracy, but it is also robust in the presence of noise.  相似文献   

6.
Radial basis function (RBF) methods have been actively developed in the last decades. RBF methods are global methods which do not require the use of specialized points and that yield high order accuracy if the function is smooth enough. Like other global approximations, the accuracy of RBF approximations of discontinuous problems deteriorates due to the Gibbs phenomenon, even as more points are added. In this paper we show that it is possible to remove the Gibbs phenomenon from RBF approximations of discontinuous functions as well as from RBF solutions of some hyperbolic partial differential equations. Although the theory for the resolution of the Gibbs phenomenon by reprojection in Gegenbauer polynomials relies on the orthogonality of the basis functions, and the RBF basis is not orthogonal, we observe that the Gegenbauer polynomials recover high order convergence from the RBF approximations of discontinuous problems in a variety of numerical examples including the linear and nonlinear hyperbolic partial differential equations. Our numerical examples using multi-quadric RBFs suggest that the Gegenbauer polynomials are Gibbs complementary to the RBF multi-quadric basis.  相似文献   

7.
We propose a method for non-uniform reconstruction of 3D scalar data. Typically, radial basis functions, trigonometric polynomials or shift-invariant functions are used in the functional approximation of 3D data. We adopt a variational approach for the reconstruction and rendering of 3D data. The principle idea is based on data fitting via thin-plate splines. An approximation by B-splines offers more compact support for fast reconstruction. We adopt this method for large datasets by introducing a block-based reconstruction approach. This makes the method practical for large datasets. Our reconstruction will be smooth across blocks. We give reconstruction measurements as error estimations based on different parameter settings and also an insight on the computational effort. We show that the block size used in reconstruction has a negligible effect on the reconstruction error. Finally we show rendering results to emphasize the quality of this 3D reconstruction technique.  相似文献   

8.
The shift-transformation matrix of general discrete orthogonal polynomials is introduced. General discrete orthogonal polynomials are adopted to obtain the modified discrete Euler-Lagrange equations. Then general discrete orthogonal polynomials are applied to simplify the discrete Euler-Lagrange equations into a set of linear algebraic ones for the approximation of state and control variables of digital systems. An example is included to demonstrate the simplicity and applicability of the method. Also, a comparison of the results obtained via several classical discrete orthogonal polynomials for the same problem is given.  相似文献   

9.
Reconstruction of volume data with quadratic super splines   总被引:1,自引:0,他引:1  
We propose a new approach to reconstruct nondiscrete models from gridded volume samples. As a model, we use quadratic trivariate super splines on a uniform tetrahedral partition. We discuss the smoothness and approximation properties of our model and compare to alternative piecewise polynomial constructions. We observe, as a nonstandard phenomenon, that the derivatives of our splines yield optimal approximation order for smooth data, while the theoretical error of the values is nearly optimal due to the averaging rules. Our approach enables efficient reconstruction and visualization of the data. As the piecewise polynomials are of the lowest possible total degree two, we can efficiently determine exact ray intersections with an isosurface for ray-casting. Moreover, the optimal approximation properties of the derivatives allow us to simply sample the necessary gradients directly from the polynomial pieces of the splines. Our results confirm the efficiency of the quasi-interpolating method and demonstrate high visual quality for rendered isosurfaces.  相似文献   

10.
提出了一种新的、以两变量离散正交Hahn多项式为核函数的图像矩,推导了正则化后,两变量离散正交Hahn多项式的简单的计算方法。对二值图像、灰度图像以及噪声图像的重建实验表明:相对于同系数的单变量的Hahn矩,两变量Hahn矩的重建误差更小。因此,它们能够更好地提取图像的特征。  相似文献   

11.
Spectral reprojection techniques make possible the recovery of exponential accuracy from the partial Fourier sum of a piecewise-analytic function, essentially conquering the Gibbs phenomenon for this class of functions. This paper extends this result to non-harmonic partial sums, proving that spectral reprojection can reduce the Gibbs phenomenon in non-harmonic reconstruction as well as remove reconstruction artifacts due to erratic sampling. We are particularly interested in the case where the Fourier samples form a frame. These techniques are motivated by a desire to improve the quality of images reconstructed from non-uniform Fourier data, such as magnetic resonance (MR) images.  相似文献   

12.
本文介绍了按段多重一般正交多项式系及其基本性质,并把它们应用于参数可分离系统的参数辨识.由于采用了按段低阶正交多项式多重逼近技术,该方法具有计算量少、结果精度高、可递推计算及不需要被辨识参数的初始估计等优点.本文提出了两个算法,并成功地应用于发酵过程细菌生长动力学模型的参数辨识.  相似文献   

13.
传统的离散正交Krawtchouk矩的基函数由两个单变量的Krawtchouk多项式乘积构成,它割裂平面两个方向之间的联系。提出了一种新的、以两变量Krawtchouk正交多项式为基函数的图像矩,并推导了正则化后两变量多项式的简单的计算方法。重建实验结果表明,相对于同系数的单变量的离散正交矩,两变量离散正交矩的重建误差更小。  相似文献   

14.
This paper presents an image reconstruction method for X-ray tomography from limited range projections. It makes use of the discrete Radon transform and a set of discrete orthogonal Tchebichef polynomials to define the projection moments and the image moments. By establishing the relationship between these two sets of moments, we show how to estimate the unknown projections from known projections in order to improve the image reconstruction. Simulation results are provided in order to validate the method and to compare its performance with some existing algorithms.  相似文献   

15.
This paper considers the approximation of sufficiently smooth multivariable functions with a multilayer perceptron (MLP). For a given approximation order, explicit formulas for the necessary number of hidden units and its distributions to the hidden layers of the MLP are derived. These formulas depend only on the number of input variables and on the desired approximation order. The concept of approximation order encompasses Kolmogorov-Gabor polynomials or discrete Volterra series, which are widely used in static and dynamic models of nonlinear systems. The results are obtained by considering structural properties of the Taylor polynomials of the function in question and of the MLP function.  相似文献   

16.
Based on a hybrid orthogonal function, a new linear, continuous and bounded operator, piecewise general orthogonal polynomials operator (PGOPO), is proposed. Its main properties and operational rules have been strictly constructed based on the theory of convergence in the mean square, and are useful to discuss the orthogonal polynomial approach in the proper mathematics frame. Then applying the PGOPO method to solve the identification problem of nonlinear systems, the convergence analysis of PGOPO approximation method is given. Finally, using the PGOPO method to solve the parameter identification of two kinds of time-varying systems, the simulation studies show that the algorithm is simple and more effective than that of general orthogonal polynomials.  相似文献   

17.
Singular source terms expressed as weighted summations of Dirac-delta functions are regularized through approximation theory with convolution operators. We consider the numerical solution of scalar and one-dimensional hyperbolic conservation laws with the singular source by spectral Chebyshev collocation methods. The regularization is obtained by convolution with a high-order compactly supported Dirac-delta approximation whose overall accuracy is controlled by the number of vanishing moments, degree of smoothness and length of the support (scaling parameter). An optimal scaling parameter that leads to a high-order accurate representation of the singular source at smooth parts and full convergence order away from the singularities in the spectral solution is derived. The accuracy of the regularization and the spectral solution is assessed by solving an advection and Burgers equation with smooth initial data. Numerical results illustrate the enhanced accuracy of the spectral method through the proposed regularization.  相似文献   

18.
The Gibbs phenomenon is intrinsic to the Fourier representation for discontinous problems. The inverse polynomial reconstruction method (IPRM) was proposed for the resolution of the Gibbs phenomenon in previous papers [Shizgal, B. D., and Jung, J.-H. (2003) and Jung, J.-H., and Shizgal, B. D. (2004)] providing spectral convergence for one dimensional global and local reconstructions. The inverse method involves the expansion of the unknown function in polynomials such that the residue between the Fourier representations of the final representation and the unknown function is orthogonal to the Fourier or polynomial spaces. The main goal of this work is to show that the one dimensional inverse method can be applied successfully to reconstruct two dimensional Fourier images. The two dimensional reconstruction is implemented globally with high accuracy when the function is analytic inside the given domain. If the function is piecewise analytic and the local reconstruction is sought, the inverse method is applied slice by slice. That is, the one dimensional inverse method is applied to remove the Gibbs oscillations in one direction and then it is applied in the other direction to remove the remaining Gibbs oscillations. It is shown that the inverse method is exact if the two-dimensional function to be reconstructed is a piecewise polynomial. The two-dimensional Shepp–Logan phantom image of the human brain is used as a preliminary study of the inverse method for two dimensional Fourier image reconstruction. The image is reconstructed with high accuracy with the inverse method  相似文献   

19.
The orthogonal neural network is a recently developed neural network based on the properties of orthogonal functions. It can avoid the drawbacks of traditional feedforward neural networks such as initial values of weights, number of processing elements, and slow convergence speed. Nevertheless, it needs many processing elements if a small training error is desired. Therefore, numerous data sets are required to train the orthogonal neural network. In the article, a least‐squares method is proposed to determine the exact weights by applying limited data sets. By using the Lagrange interpolation method, the desired data sets required to solve for the exact weights can be calculated. An experiment in approximating typical continuous and discrete functions is given. The Chebyshev polynomial is chosen to generate the processing elements of the orthogonal neural network. The experimental results show that the numerical method in determining the weights gives as good performance in approximation error as the known training method and the former has less convergence time. © 2004 Wiley Periodicals, Inc. Int J Int Syst 19: 1257–1275, 2004.  相似文献   

20.
We consider the initial boundary value problem of the long-short wave equations on the whole line. A fully discrete spectral approximation scheme is developed based on Chebyshev rational functions in space and central difference in time. A priori estimates are derived which are crucial to study numerical stability and convergence of the fully discrete scheme. Then, unconditional numerical stability is proved. Convergence of the fully discrete scheme is shown by the method of error estimates. Finally, numerical experiments are presented to demonstrate the efficiency and accuracy of the convergence results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号