首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NO x adsorption mechanism on Pt/BaO/Al2O3 catalysts was investigated by performing NO x storage/reduction cycles, NO2 adsorption and NO + O2 adsorption on 2%Pt/(x)BaO/Al2O3 (x = 2, 8, and 20 wt%) catalysts. NO x uptake profiles on 2%\Pt/20%BaO/Al2O3 at 523 K show complete uptake behavior for almost 5 min, and then the NO x level starts gradually increasing with time and it reaches 75% of the inlet NO x concentration after 30 min time-on-stream. Although this catalyst shows fairly high NO x conversion at 523 K, only ~2.4 wt% out of 20 wt% BaO is converted to Ba(NO3)2. Adsorption studies by using NO2 and NO + O2 suggest two different NO x adsorption mechanisms. The NO2 uptake profile on 2%Pt/20%BaO/Al2O3 shows the absence of a complete NO x uptake period at the beginning of adsorption and the overall NO x uptake is controlled by the gas–solid equilibrium between NO2 and BaO/Ba(NO3)2 phase. When we use NO + O2, complete initial NO x uptake occurs and the time it takes to convert ~4% of BaO to Ba(NO3)2 is independent of the NO concentration. These NO x uptake characteristics suggest that the NO + O2 reaction on the surface of Pt particles produces NO2 that is subsequently transferred to the neighboring BaO phase by spill over. At the beginning of the NO x uptake, this spill-over process is very fast and so it is able to provide complete NO x storage. However, the NO x uptake by this mechanism slows down as BaO in the vicinity of Pt particles are converted to Ba(NO3)2. The formation of Ba(NO3)2 around the Pt particles results in the development of a diffusion barrier for NO2, and increases the probability of NO2 desorption and consequently, the beginning of NO x slip. As NO x uptake by NO2 spill-over mechanism slows down due to the diffusion barrier formation, the rate and extent of NO2 uptake are determined by the diffusion rate of nitrate ions into the BaO bulk, which, in turn, is determined by the gas phase NO2 concentration.  相似文献   

2.
Ag/Al2O3 catalysts with 1 wt% SiO2 or TiO2 doping in alumina support have been prepared by wet impregnation method and tested for sulphur tolerance during the selective catalytic reduction (SCR) of NOx using propene under lean conditions. Ag/Al2O3 showed 44% NOx conversion at 623 K, which was drastically reduced to 21% when exposed to 20 ppm SO2. When Al2O3 support in Ag/Al2O3 was doped with 1 wt% SiO2 or TiO2 the NOx conversion remained constant in presence of SO2 showing the improved sulphur tolerance of these catalysts. Subsequent water addition does not induce significant deactivation. On the contrary, a slight promotional effect on the activity of NO conversion to nitrogen is observed after Si and Ti incorporation. FTIR study showed the sulphation of silver and aluminum sites of Ag/Al2O3 catalysts resulting in the decrease in the formation of reactive intermediate species such as –NCO, which in turn decreases NOx conversion to N2. In the case of Ag/Al2O3 doped with SiO2 or TiO2, formation of silver sulphate and aluminum sulphate was drastically reduced, which was evident in FTIR resulting in remarkable improvement in the sulphur tolerance of Ag/Al2O3 catalyst. These catalysts before and after the reaction have been characterized with various techniques (XRD, BET surface area, transmittance FTIR and pyridine adsorption) for physico-chemical properties.  相似文献   

3.
The NO x storage performance at low temperature (100–200 °C) has been studied for model NO x storage catalysts. The catalysts were prepared by sequentially depositing support, metal oxide and platinum on ceramic monoliths. The support material consisted of acidic aluminium silicate, alumina or basic aluminium magnesium oxide, and the added metal oxide was either ceria or barium oxide. The NO x conversion was evaluated under net-oxidising conditions with transients between lean and rich gas composition and the NO x storage performance was studied by isothermal adsorption of NO2 followed by temperature programmed desorption of adsorbed species. The maximum in NO x storage capacity was observed at 100 °C for all samples studied. The Pt/BaO/Al2O3 catalyst stored about twice the amount of NO x compared with the Pt/Al2O3 and Pt/CeO2/Al2O3 samples. The storage capacity increased with increasing basicity of the support material, i.e. Pt/Al2O3·SiO2 < Pt/Al2O3 < Pt/Al2O3 · MgO. Water did not significantly affect the NO x storage performance for Pt/Al2O3 or Pt/BaO/Al2O3.  相似文献   

4.
Effect of additives, Ce and Mn, on the catalytic performance of Sn/Al2O3 catalyst prepared by sol–gel method for the selective reduction of NOx with propene under lean conditions was studied. Sn–Ce/Al2O3 catalysts exhibited higher activity than Sn/Al2O3 catalyst and the optimum Ce loading is 0.5–1%. The promoting effect of Ce is to enhance the oxidation of NO to NO2 and facilitate the activation of propene, both of which are important steps for the NOx reduction. The presence of oxygen contributes to the oxidation of NO and shows a promoting effect.  相似文献   

5.
In this paper a global reaction kinetic model is used to understand and describe the NOx storage/reduction process in the presence of CO2 and H2O. Experiments have been performed in a packed bed reactor with a Pt–Ba/γ-Al2O3 powder catalyst (1 wt% Pt and 30 wt% Ba) with different lean/rich cycle timings at different temperatures (200, 250, and ) and using different reductants (H2, CO, and C2H4). Model simulations and experimental results are compared. H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. The rate of NO storage increases with temperature. The reduction of stored NO with H2 is complete for all investigated temperatures. At temperatures above , the water gas shift (WGS) reaction takes place and H2 acts as reductant instead of CO. At , CO and C2H4 are not able to completely regenerate the catalyst. At the higher temperatures, C2H4 is capable of reducing all the stored NO, although C2H4 poisons the Pt sites by carbon decomposition at . The model adequately describes the NO breakthrough profile during 100 min lean exposure as well as the subsequent release and reduction of the stored NO. Further, the model is capable of simulating transient reactor experiments with 240 s lean and 60 s rich cycle timings.  相似文献   

6.
Effect of cobalt and rhodium promoter on NOx storage and reduction (NSR) kinetics was investigated over Pt/BaO/Al2O3. Kinetics of 2% cobalt loading over Pt/BaO/Al2O3 demonstrated highest NOx uptake during lean cycle, while reduction efficiency during rich cycle appeared most poor. In contrast to this, rhodium showed suppressing effect of NOx uptake during lean cycle and demonstrated an enhanced effect for the higher efficiency of NOx reduction during rich cycle. DRIFT study for NOx uptake and regeneration confirmed formation of surface BaNOx from the band at 1300 cm−1 and formation of bulk BaNOx from the band at 1330 cm−1.  相似文献   

7.
NOx storage performances have been investigated on a Pt/Ba/Al2O3 catalyst by comparison using two types of non-thermal plasma (NTP) reactor: the “PDC system” reactor and the “PFC system” reactor. In the PDC system, the catalyst was placed in the discharge space and was activated by the plasma directly, whereas in the PFC system, the plasma reactor was followed by the catalyst. The results showed that the NOx storage capacity (NSC) of the Pt/Ba/Al2O3 catalyst was significantly enhanced by the non-thermal plasma in the PDC and PFC system, and the PDC system exhibited better promotional effect than the PFC system in the temperature range of 100–300 °C. The NSC of the catalyst was increased with the increase of the input energy density both in the PDC and PFC system due to the higher NO oxidation at higher input energy density. It was also found that the ionic wind induced by plasma in the PDC system enhanced the quantity of the NO adsorbed onto the catalyst surface and therefore could react with the O-radical to form more NO2, and thus promote the formation of nitrate on the catalyst.  相似文献   

8.
Flow reactor experiments and X-ray photoelectron spectroscopy (XPS) measurements were used to investigate the importance of platinum oxide formation on Pt/BaO/Al2O3 NO x storage catalysts during reactions conditions. The reaction studied was NO(g) + 1/2 O2(g) NO2(g). During NO2 exposure of the catalyst the NO2 dissociation rate decreased during the reaction. This activity decrease with time was also studied with XPS and it was found to be due to platinum oxide formation. The influence of sulphur exposure conditions on the performance of the NO x storage catalysts was studied by exposing the samples to lean and/or rich gas mixtures, simulating the conditions in a mixed lean application, containing SO2. The main results show that all samples are sensitive to sulphur and that the deactivation proceeds faster when SO2 is present in the feed under rich conditions than under lean or continuous SO2 exposure. Additionally, the influence of the noble metals present in the catalysts was investigated regarding sulphur sensitivity and it was found that a combination of platinum and rhodium seems to be preferable to retain high performance of the catalyst under SO2 exposure and subsequent regeneration. Finally, the behaviour of micro-fabricated model NO x storage catalysts was studied as a function of temperature and gas composition with area-resolved XPS. These model catalysts consisted of a thin film of Pt deposited on one-half of a BaCO3 pellet. It was found that the combination of SO2 and O2 resulted in migration of Pt on the BaCO3 support up to one mm away from the Pt/BaCO3 interface.  相似文献   

9.
An investigation was conducted of noble metal and metal oxide catalysts deposited on Al2O3. The noble metals Pt, Pd, Rh the metal oxides CuO, SnO2, CoO, Ag2O, In2O3, catalysts were examined. Also investigated were noble metal Pt, Pd, Rh-doped In2O3/Al2O3 catalysts prepared by single sol–gel method. Both were studied for their capability to reduce NO by propene under lean conditions. In order to improve the catalytic activity and the temperature window, the intermediate addition propene between a Pt/Al2O3 oxidation and metal oxide combined catalyst system was also studied. Pt/Al2O3 and In2O3/Al2O3 combined catalyst showed high NO reduction activity in a wider temperature window, and more than 60% NO conversion was observed in the temperature range of 300–550 °C.  相似文献   

10.
The effect of steam on NO x reduction over lean NO x trap (LNT) Pt–Ba/Al2O3 and Pt/Al2O3 model catalysts was investigated with reaction protocols of rich steady-state followed by lean–rich cyclic operations using CO and C3H8 as reductants, respectively. Compared to dry atmosphere, steam promoted NO x reduction; however, under rich conditions the primary reduction product was NH3. The results of NO x reduction and NH3 selectivity versus temperature, combined with temperature programmed reduction of stored NO x over Pt–BaO/Al2O3 suggest that steam causes NH3 formation over Pt sites via reduction of NO x by hydrogen that is generated via water gas shift for CO/steam, or via steam reforming for C3H8/steam. During the rich mode of lean–rich cyclic operation with lean–rich duration ratio of 60 /20 s, not only the feed NO, but also the stored NO x contributed to NH3 formation. The NH3 formed under these conditions could be effectively trapped by a downstream bed of Co2+ exchanged Beta zeolite. When the cyclic operation was switched into lean mode at T < 450 °C, the trapped ammonia in turn participated in additional NO x reduction, leading to improved NO x storage efficiency.  相似文献   

11.
NO x adsorption was measured with a barium based NOx storage catalyst at an engine bench equipped with a lean burn gasoline direct injection engine (GDI). In order to study the influence of gas phase NO2 on the NOx storage efficiency two different pre-catalysts were used: One with excellent NO oxidation activity to produce a high NO2 concentration and another pre-catalyst without NO oxidation activity and therefore high NO concentration at the NO x storage catalyst inlet. Both pre-catalyst had excellent HC and CO conversion efficiency and therefore the CO and HC concentration at the NO x storage catalyst inlet was practically zero. No lean NO x reduction was observed. Under that conditions, experiments with NO x storage catalysts of different length show that a high NO2 inlet concentration did not enhance the NO x storage efficiency. Moreover, we observed reduction of NO2 to NO over the NOx storage catalyst. However, in presence of a high NO inlet concentration NO2 formation was observed which may proceed parallel to NO x storage.  相似文献   

12.
In this investigation, a comparative study for a NO X storage catalytic system was performed focusing on the parameters that affect the reduction by using different reductants (H2, CO, C3H6 and C3H8) and different temperatures (350, 250 and 150 °C), for a Pt/BaO/Al2O3 catalyst. Transient experiments show that H2 and CO are highly efficient reductants compared to C3H6 which is somewhat less efficient. H2 shows a significant reduction effect at relatively low temperature (150 °C) but with a low storage capacity. We find that C3H8does not show any NO X reduction ability for NO X stored in Pt/BaO/Al2O3 at any of the temperatures. The formation of ammonia and nitrous oxide is also discussed.  相似文献   

13.
The deactivation of a Pt/Ba/Al2O3 NO x -trap model catalyst submitted to SO2 treatment and/or thermal ageing at 800 °C was studied by H2 temperature programmed reduction (TPR), X-ray diffraction (XRD) and NO x storage capacity measurements.The X-ray diffractogram of the fresh sample exhibits peaks characteristic for barium carbonate. Thermal ageing leads to the decomposition of barium carbonate and to the formation of BaAl2O4. The TPR profile of the sulphated sample shows the presence of (i) surface aluminium sulphates, (ii) surface barium sulphates, (iii) bulk barium sulphates. The exposure to SO2 after ageing leads to a small decrease of the surface barium-based sulphates, expected mainly as aluminate barium sulphates. This evolution can be attributed to a sintering of the storage material. TPR experiments also show that thermal treatment at 800 °C after the exposure to SO2 involves the decomposition of aluminium surface sulphates to give mainly bulk barium sulphates, also pointed out by XRD. Thus, the thermal treatment at 800 °C leads to a stabilization of the sulphates.These results are in accordance with the NO x storage capacity measurements. On non-sulphated catalysts, the treatment at 800 °C induces to a decrease of the NO x storage capacity, showing that barium aluminate presents a lower NO x storage capacity than barium carbonate. Sulphation strongly decreases the NO x storage capacity of catalysts, whatever the initial thermal treatment, showing that barium sulphates inhibit the NO2 adsorption. Moreover, the platinum activity for the NO to NO2 oxidation is lowered by thermal treatments.  相似文献   

14.
Z.H. Wang  A. Ehn  Z.S. Li  J. Bood  K.F. Cen 《Fuel》2010,89(9):2346-130
Direct ozone (O3) injection is a promising flue-gas treatment technology based on oxidation of NO and Hg into soluble species like NO2, NO3, N2O5, oxidized mercury, etc. These product gases are then effectively removed from the flue gases with the wet flue gas desulfurization system for SO2. The kinetics and mixing behaviors of the oxidation process are important phenomena in development of practical applications. In this work, planar laser-induced fluorescence (PLIF) of NO and NO2 was utilized to investigate the reaction structures between a turbulent O3 jet (dry air with 2000 ppm O3) and a laminar co-flow of simulated flue gas (containing 200 ppm NO), prepared in co-axial tubes. The shape of the reaction zone and the NO conversion rate along with the downstream length were determined from the NO-PLIF measurements. About 62% of NO was oxidized at 15d (d, jet orifice diameter) by a 30 m/s O3 jet with an influence width of about 6d in radius. The NO2 PLIF results support the conclusions deduced from the NO-PLIF measurements.  相似文献   

15.
A number of supported metal oxide catalysts were screened for their catalytic performance for the oxidation of carbon black (CB; a model diesel soot) using NO2 as the main oxidant. It was found that contact between the carbon and catalyst was a key factor in determining the rate of oxidation by NO2. Oxides with low melting points, such as Re2O7, MoO3 and V2O5 showed higher activities than did Fe3O4 and Co3O4. The activities of MoO3 and V2O5 on various supporting materials were also examined. MoO3/SiO2 was the most active catalyst among the supported MoO3 examined, whereas, V2O5/MCM-41 showed the highest activity among the supported V2O5. Different performances of the supported MoO3 catalysts were explained by the interaction of MoO3 with the supports: a strong MoO3/support interaction may result in a poor mobility of MoO3 and a poor activity for oxidation of carbon by NO2. The high activity of V2O5/MCM-41 was associated with its catalysis of the oxidation of SO2 by NO2 to form SO3, which substantially promotes oxidation of carbon by NO2. Addition of transition metal oxides or sulfates to supported MoO3 and V2O5 was also investigated. Combining MoO3 or V2O5 with CuO on SiO2, adding VOSO4 to MoO3/SiO2 or MoO3/Al2O3 and adding TiOSO4 or CuSO4 to V2O5/Al2O3 improved the catalytic performance.  相似文献   

16.
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2.  相似文献   

17.
Barium-containing NO x storage catalyst showed serious deactivation under thermal exposure at high temperatures. To elucidate the thermal deterioration of the NO x storage catalyst, four types of model catalyst, Pt/Al2O3, Ba/Al2O3, Pt–Ba/Al2O3, and a physical mixture of Pt/Al2O3 + Ba/Al2O3 were prepared and their physicochemical properties such as BET, NO TPD, TGA/DSC, XRD, and XPS were evaluated while the thermal aging temperature was increased from 550 to 1050°C. The fresh Pt–Ba/Al2O3 showed a sorption capacity of 3.35 wt%/g-cat. but the aged one revealed a reduced capacity of 2.28 wt%/g-cat. corresponding to 68% of the fresh one. It was found that this reduced sorption capacity was directly related to the deterioration of the NO x storage catalyst by thermal aging. The Ba on Ba/Al2O3 and Pt–Ba/Al2O3 catalysts began to interact with alumina to form Ba–Al solid alloy above 600°C and then transformed into stable BaAl2O4 having a spinel structure. However, no phase transition was observed in the Pt/Al2O3 catalyst having no barium component, even after aging at 1050°C.  相似文献   

18.
CO impedes the low temperature (<170 °C) oxidation of C3H6 on supported Pt. Supported Au catalysts are very effective in the removal of CO by oxidation, although it has little propene oxidation activity under these conditions. Addition of Au/TiO2 to Pt/Al2O3 either as a physical mixture or as a pre-catalyst removes the CO and lowers the light-off temperature (T 50) for C3H6 oxidation compared with Pt catalyst alone by ~54 °C in a feed of 1% CO, 400 ppm C3H6, 14% O2, 2% H2O.  相似文献   

19.
Electrical conductivity measurements on EUROCAT V2O5–WO3/TiO2 catalyst and on its precursor without vanadia were performed at 300°C under pure oxygen to characterize the samples, under NO and under NH3 to determine the mode of reactivity of these reactants and under two reaction mixtures ((i) 2000 ppm NO + 2000 ppm NH3 without O2, and (ii) 2000 ppm NO + 2000 ppm NH3 + 500 ppm O2) to put in evidence redox processes in SCR deNOx reaction.It was first demonstrated that titania support contains certain amounts of dissolved W6+ and V5+ ions, whose dissolution in the lattice of titania creates an n-type doping effect. Electrical conductivity revealed that the so-called reference pure titania monolith was highly doped by heterovalent cations whose valency was higher than +4. Subsequent chemical analyses revealed that so-called pure titania reference catalyst was actually the WO3/TiO2 precursor of V2O5–WO3/TiO2 EUROCAT catalyst. It contained an average amount of 0.37 at.% W6+dissolved in titania, i.e. 1.07 × 1020 W6+ cations dissolved/cm3 of titania. For the fresh catalyst, the mean amounts of W6+ and V5+ ions dissolved in titania were found to be equal to 1.07 × 1020 and 4.47 × 1020 cm−3, respectively. For the used catalyst, the mean amounts of W6+ and V5+ ions dissolved were found to be equal to 1.07 × 1020 and 7.42 × 1020 cm−3, respectively. Since fresh and used catalysts have similar compositions and similar catalytic behaviours, the only manifestation of ageing was a supplementary progressive dissolution of 2.9 × 1020 additional V5+ cations in titania.After a prompt removal of oxygen, it appeared that NO alone has an electron acceptor character, linked to its possible ionosorption as NO and to the filling of anionic vacancies, mostly present on vanadia. Ammonia had a strong reducing behaviour with the formation of singly ionized vacancies. A subsequent introduction of NO indicated a donor character of this molecule, in opposition to its first adsorption. This was ascribed to its reaction with previously adsorbed ammonia strongly bound to acidic sites. Under NO + NH3 reaction mixture in the absence of oxygen, the increase of electrical conductivity was ascribed to the formation of anionic vacancies, mainly on vanadia, created by dehydroxylation and dehydration of the surface. These anionic vacancies were initially subsequently filled by the oxygen atom of NO. No atoms, resulting from the dissociation of NO and from ammonia dehydrogenation, recombined into dinitrogen molecules. The reaction corresponded to
. In the presence of oxygen, NO did not exhibit anymore its electron acceptor character, since the filling of anionic vacancies was performed by oxygen from the gas phase. NO reacted directly with ammonia strongly bound on acidic sites. A tentative redox mechanism was proposed for both cases.  相似文献   

20.
We communicate experimental results for the oxidation of methane by oxygen over alumina supported Pd and Pt monolith catalysts under transient conditions. Temperature programmed reaction (TPReaction) and reactant pulse-response (PR) experiments have been performed, using a continuous gas-flow reactor equipped with a downstream mass spectrometer for gas phase analysis. Special attention was paid to the influence of gas composition changes, i.e., O2 and H2 pulsing, respectively, on the methane conversion. For Pt/Al2O3 oxygen pulsing can significantly increase the methane conversion which can be even further improved by pulsing hydrogen instead. Such transient effects are not observed for the Pd/Al2O3 catalyst for which instead constantly lean conditions is beneficial. Our results suggest that under lean conditions Pd and Pt crystallites may undergo bulk- and partial (surface oxide formation) oxidation, respectively, which for Pd results in more active surfaces, while for Pt the activity is reduced. The latter seems to connect to a lowering of the ability to dissociate methane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号