首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis and oxidation behavior of nanocrystalline MCrAlY bond coatings   总被引:1,自引:1,他引:1  
Thermal barrier coating systems protect turbine blades against high-temperature corrosion and oxidation. They consist of a metal bond coat (MCrAlY, M = Ni, Co) and a ceramic top layer (ZrO2/Y2O3). In this work, the oxidation behavior of conventional and nanostructured high-velocity oxyfuel (HVOF) NiCrAlY coatings has been compared. Commercially available NiCrAlY powder was mechanically cryomilled and HVOF sprayed on a nickel alloy foil to form a nanocrystalline coating. Freestanding bodies of conventional and nanostructured HVOF NiCrAlY coatings were oxidized at 1000 °C for different time periods to form the thermally grown oxide layer. The experiments show an improvement in oxidation resistance in the nanostructured coating when compared with that of the conventional one. The observed behavior is a result of the formation of a continuous Al2O3 layer on the surface of the nanostructured HVOF NiCrAlY coating. This layer protects the coating from further oxidation and avoids the formation of mixed oxide protrusions present in the conventional coating. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

2.
New attachment for controlling gas flow in the HVOF process   总被引:1,自引:0,他引:1  
During the decade, the high-velocity oxyfuel (HVOF) process proved to be a technological alternative to the many conventional thermal spray processes. It would be very advantageous to design a nozzle that provides improved performance in the areas of deposition efficiency, particle in-flight oxidation, and flexibility to allow deposition of ceramic coatings. Based on a numerical analysis, a new attachment to a standard HVOF torch was modeled, designed, tested, and used to produce thermal spray coatings according to the industrial needs mentioned above. Performance of the attachment was investigated by spraying several coating materials including metal and ceramic powders. Particle conditions and spatial distribution, as well as gas phase composition, corresponding to the new attachment and the standard HVOF gun, were compared. The attachment provides better particle spatial distribution, combined with higher particle velocity and temperature. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), 5–8 May, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

3.
Nanostructured WC-12% Co coatings were deposited by suspension plasma spraying of submicron feedstock powders, using an internal injection plasma torch. The liquid carrier used in this approach allows for controlled injection of much finer particles than in conventional thermal spraying, leading to thin coatings with a fine surface finish. A polyethylene-imine (PEI) dispersant was used to stabilize the colloidal suspension in an ethanol carrier. In-flight particle states were measured for a number of operating conditions of varying plasma gas flow rates, feed rates, and standoff distances and were related to the resulting microstructure, phase composition (EDS, SEM, XRD), and Vickers hardness. High in-flight particle velocities (>800 m/s) were generated, leading to dense coatings. It was observed that the coating quality was generally compromised by the high temperature and reactivity of the small particles. To compensate for this shortcoming, the suspension feed rate was adjusted, thereby varying the thermal load on the plasma. Results showed that a slightly larger agglomerate size, in conjunction with low particle jet temperatures, could somewhat limit the decomposition of WC into brittle W2C/W3C and amorphous cobalt containing binder phases. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

4.
High-velocity oxyfuel (HVOF) spraying of WC-12Co was performed using a feedstock in which the WC phase was either principally in the micron size range (conventional) or was engineered to contain a significant fraction of nanosized grains (multimodal). Three different HVOF systems and a wide range of spray parameter settings were used to study the effect of in-flight particle characteristics on coating properties. A process window with respect to particle temperature was identified for producing coatings with the highest resistance to dry abrasion. Although the use of a feedstock containing a nanosized WC phase produced harder coatings, there was little difference in the abrasion resistance of the best-performing conventional and multimodal coatings. However, there is a potential benefit in using the multimodal feedstock due to higher deposition efficiencies and a larger processing window. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

5.
The effect of particle size distribution on the degradation behavior of plasma sprayed CoNi- and CoCrAlY coatings during isothermal oxidation was investigated, in terms of the oxygen content, porosity, surface roughness, and oxide scale formation. The results show that the degradation of both coatings was considerably influenced by the starting particle size distribution. It also shows that in the as-sprayed vacuum plasma spray (VPS) coatings the oxygen content on the coating surface increased significantly with decreased average particle size. But after thermal exposure, the difference of the oxygen contents between the coatings with different particle size was decreased. The powder with various particle size resulted in low porosity inside the coatings during the deposition process. The surface roughness of the coatings increased with increased particle size. The small particles produced a relatively smooth surface, and the oxide growth in the coating deposited by small particle was slower than that in the large particle coating. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

6.
Ideally, plasma spraying of metal powders must take place within a narrow processing “window” where the particles become fully molten before they hit the substrate, but are not overheated to the point that substantial volatilization occurs. Metal evaporation in flight results in a decrease in the deposition efficiency. In addiiton, the emission of vapors leads to the formation of metal and oxide fumes that are undesirable from the viewpoints of both resource conservation and environmental control. This study examines the vaporization and fume formation in the plasma spraying of iron powders of different size ranges. The experimental part involves the determination of the population (number density) of metal atoms at different cross sections along the trajectory of the plasma jet, and the collection of the submicronic particles resulting from vapor condensation. The experimental results are compared with the projections of a mathematical model that computes the gas/particle velocity and temperature fields within the jet envelope, projects the rate of heat/mass transfer at the surface of individual particles, and determines the rate of volatilization that results in the formation of metal and metal oxide fumes. This paper was presented at the International Thermal Spray Conference sponsored by the ASM Thermal Spray Society, the DVS-German Welding Society and the IIW International Institute of Welding, May 8–11, 2000 in Montreal, Canada.  相似文献   

7.
Wear at the electrode surfaces of a one-cathode plasma torch changes the characteristic fluctuation pattern of the plasma jet. This affects the trajectory of the particles injected into the plasma jet in a non-controllable way, which degrades the reproducibility of the process. Time-based voltage measurements and Fourier analysis were carried out on a one-cathode F4 torch at different wear conditions to determine the evolution of wear dependant characteristics. A significant correlation is observed between increasing torch wear and decreasing voltage roughness and high frequency noise. Furthermore, by means of particle diagnostic systems, the change in the particle velocity and temperature has been measured. The variations of the particle characteristics are significant and thus an influence on the sprayed coating microstructure is to be expected. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

8.
The plasma sprya deposition of a zirconia thermal barrier coating (TBC) on a gas turbine component was examined using analytical and experimental techniques. The coating thickness was simulated by the use of commercial off-line software. The impinging jet was modeled by means of a finite difference elliptic code using a simplified turbulence model. Powder particle velocity, temperature history, and trajectory were calculated using a stochastic discrete particle model. The heat transfer and fluid flow model were then used to calculate transient coating and substrate temperatures using the finite element method. The predicted thickness, temperature, and velocity of the particles and the coating temperatures were compared with these measurements, and good correlations were obtained. The coating microstructure was evaluated by optical and scanning microscopy techniques. Special attention was paid to the crack structures within the top coating. Finally, the correlation between the modeled parameters and the deposit microstructure was studied. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

9.
In plasma spraying, the arc-root fluctuations, modifying the length and characteristics of the plasma jet, have an important influence on particle thermal treatment. These voltage fluctuations are strongly linked to the thickness of the cold boundary layer (CBL), surrounding the arc column. This thickness depends on the plasma spray parameters (composition and plasma forming gas mass flow rate, arc current, etc.) and the plasma torch design (anode-nozzle internal diameter and shape, etc.). In order to determine the influence of these different spray parameters on the CBL properties and voltage fluctuations, experiments were performed with two different plasma torches from Sulzer Metco. The first one is a PTF4 torch with a cylindrical anode-nozzle, working with Ar-H2 plasma gas mixtures and the second one is a 3MB torch with either a conical or a cylindrical anode-nozzle, working with N2-H2 plasma gas mixtures. Moreover, arc voltage fluctuations influence on particle thermal treatment was studied through the measurements of transient temperature and velocity of particles, issued from an yttria partially stabilized zirconia powder with a size distribution between 5 and 25 μm. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

10.
In this work, one- and two-step laser dispersing of Ti6Al4V surfaces by use of elemental boron (B) as well as TiB2, ZrB2, and CrB2 was carried out with CO2 and Nd:YAG lasers using an adapted apparatus to provide inert conditions. Depending on the laser system, melt pool depths between 200 μm and more than 1000 μm were achieved, and the boride precipitates allowed an increase of the surface hardness from 350 HV0.05 in the initial state to more than 600 HV0.05. The modified surface areas were characterized by means of optical microscopy, scanning electron microscopy, and EDXS. Oscillating and cavitation erosion wear tests were carried out. For reinforcement of component surfaces with complex shape, a two-step laser deposition process and a technology for predeposition of diboride layers with defined thickness is required. The applicability of vacuum plasma spraying for predeposition is discussed. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

11.
Thermal barrier coatings were produced using both Ar and N2 as the primary plasma gas. Various aspects of the process and the coatings were investigated. It was found that higher in-flight particle temperatures could be produced using N2, but particle velocities were lower. Deposition efficiencies could be increased by a factor of two by using N2 as compared to Ar. Coatings having similar values of porosity, hardness, Young’s modulus, and thermal diffusivity could be produced using the two primary gases. The coatings exhibited similar changes (increased hardness, stiffness, and thermal diffusivity) when heat-treated at 1400 °C. However, the N2-processed coatings tended to have lower values of Young’s modulus and thermal diffusivity following such treatment. The results point to the potential advantage, in terms of reduced powder consumption and increased production rate, of using N2 as compared to Ar as the primary plasma gas for TBC deposition. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

12.
Perovskite-type LaMnO3 powders and coatings have been prepared by a novel technique: reactive suspension plasma spraying (SPS) using an inductively coupled plasma of approximately 40 kW plate power and an oxygen plasma sheath gas. Suitable precursor mixtures were found on the basis of solid state reactions, solubility, and the phases obtained during the spray process. Best results were achieved by spraying a suspension of fine MnO2 powder in a saturated ethanol solution of LaCl3 with a 1 to 1 molar ratio of lanthanum and manganese. A low reactor pressure was helpful in diminishing the amount of corrosive chlorine compounds in the reactor. As-sprayed coatings and collected powders showed perovskite contents of 70 to 90%. After a posttreatment with an 80% oxygen plasma, an almost pure LaMnO3 deposit was achieved in the center of the incident plasma jet. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

13.
Mathematical models for simulation of motion and heating of fine ceramic particles in plasma and laser spraying, as well as under conditions of a new technological process, that is, hybrid laser plasma spraying, are proposed. Trajectories, velocities, and temperature fields of fine SiO2 particles being sprayed using the argon plasma jet, CO2 laser beam, and their combination have been calculated. It is shown that the space-time distribution of temperature in spray particles greatly depends on the spraying method. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

14.
Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This article describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature, and position distribution on the substrate are predicted. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

15.
A variety of metallic powder particles were thermally sprayed onto the mirror polished metallic substrate surface and the effect of both substrate temperature and ambient pressure on the flattening behavior of the particle was systematically investigated. In the flattening behavior of the sprayed particle onto the substrate surface, critical conditions were recognized both in the substrate temperature and ambient pressure. That is, the flattening behavior changed transitionally on that critical temperature and pressure range, respectively. A transition temperature, T t, and transition pressure, P t, were defined and introduced, respectively for those critical conditions. The fact that the dependence of both transition temperature and transition pressure on the sprayed particle material had similar tendency indicated that the wetting of the substrate by the molten particles seemed to be a domination in the flattening. Three-dimensional transition curvature by combining both transition temperature and transition pressure dependence was proposed as a practical and effective controlling principle of the thermal spray process. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

16.
This work addresses the fabrication of membrane-type solid oxide fuel cells (SOFCs) operating at medium temperatures, where all components are fabricated by plasma spray technology, and the evaluation of the performance of the SOFC single unit in a temperature range of 500 to 800 °C. Single cells composed of LaSrMgO3 cathodes, LaSrGaMgO3 (LSGM) electrolytes, and Ni/yttria-stabilized zirconia anodes were fabricated in successive atmospheric plasma-spraying processes. Plasma-spraying processes have been optimized and tailored to each layer to achieve highly porous cathode and anode layers as well as high-density electrolyte layers. A major effort has been devoted to the production of the LSGM electrolyte that has a high density and is free of cracks. Electrochemical impedance spectroscopy was used to investigate the conductivity of the electrode layers, and particularly the resistance of the electrolyte layer. It revealed that the heat treatment had a great influence on the specific conductivity of the sprayed electrolyte layers and that the specific conductivity of the heat-treated layers was dramatically increased to the same magnitude as is typical for sintered LSGM pellets. The experimental results have demonstrated that the plasma-spraying process has a great potential for the integrated fabrication of medium-temperature SOFC units. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Science and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

17.
The effect of powder injecting location of the plasma spraying on spraying properties was studied. Three different powder-injecting methods were applied in the experiment. In the first method, the particles were axially injected into the plasma flow from the cathode tip. In the second method, the particles were radially injected into the plasma flow just downstream of the anode arc root inside the anode nozzle. In the third method, the particles were radially injected into the plasma jet at the nozzle exit. The alumina particles with a mean diameter of 20 μm were used to deposit coatings. Spraying properties, such as the deposition efficiency, the melting rate of the powder particles, and the coating quality were investigated. The results show that the spraying with axial particle injecting can heat and melt the powder particles more effectively, produce coatings with better quality, and have higher deposition efficiency. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

18.
Aluminum powder of 99.7 wt.% purity and in the nominal particle size range of −75+15 μm has been sprayed onto a range of substrates by cold gas dynamic spraying (cold spraying) with helium, at room temperature, as the accelerating gas. The substrates examined include metals with a range of hardness, polymers, and ceramics. The substrate surfaces had low roughness (R a < 0.1 μm) before deposition of aluminum in an attempt to separate effects of mechanical bonding from other forms of bonding, such as chemical or metallurgical bonding. The cross-sectional area of a single track of aluminum sprayed onto the substrate was taken as a measure of the ease of initiation of deposition, assuming that once a coating had begun to deposit onto a substrate, its growth would occur at a constant rate regardless of substrate type. It has been shown that initiation of deposition depends critically upon substrate type. For metals where initiation was not easy, small aluminum particles were deposited preferentially to large ones (due to their higher impact velocities); these may have acted as an interlayer to promote further building of the coating. A number of phenomena have been observed following spraying onto various substrates, such as substrate melting, substrate and particle deformation, and evidence for the formation of a metal-jet (akin to that seen in explosive welding). Such phenomena have been related to the processes occurring during impact of the particles on the substrate. Generally, initiation of aluminum deposition was poor for nonmetallic materials (where no metallic bonding between the particle and substrate was possible) and for very soft metals (in the case of tin, melting of the substrate was observed). Metallic substrates harder than the aluminum particles generally promoted deposition, although deposition onto aluminum alloy was difficult due to the presence of a tenacious oxide layer. Initiation was seen to be rapid on hard metallic substrates, even when deformation of the substrate was not visible. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Sciences and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

19.
Hybrid plasma spraying combined with yttrium-aluminum-garnet laser irradiation was studied to obtain optimum zirconia coatings for thermal barrier use. Zirconia coatings of approximately 150 μm thickness were formed on NiCrAlY bond coated steel substrates both by means of conventional plasma spraying and hybrid plasma spraying under a variety of conditions. Post-laser irradiation was also conducted on the plasma as-sprayed coating. The microstructure of each coating was studied and, for some representative coatings, thermal barrier properties were evaluated by hot erosion and hot oxidation tests. With hybrid spraying, performed under optimum conditions, it was found that a microstructure with appropriate partial densification and without connected porosity was formed and that cracks, which are generally produced in the post-laser irradiation treatment, were completely inhibited. In addition, hybrid spraying formed a smooth coating surface. These microstructural changes resulted in improved coating properties with regard to hardness, high temperature erosion resistance, and oxidation resistance. This paper originally appeared in Thermal Spray: Meeting the Challenges of the 21st Century; Proceedings of the 15th International Thermal Spray Conference, C. Coddet, Ed., ASM International, Materials Park, OH, 1998. This proceedings paper has been extensively reviewed according to the editorial policy of the Journal of Thermal Spray Technology.  相似文献   

20.
等离子喷涂NiCrCoAlY涂层氧化控制研究   总被引:1,自引:0,他引:1  
利用等离子喷涂技术制备了NiCrCoAlY粒子和涂层,研究了等离子喷涂过程中NiCrCoAlY粒子的氧化行为以及屏蔽气体对NiCrCoAlY涂层抗高温氧化性能的影响。结果表明,粒子在飞行过程中存在对流氧化和扩散氧化两种氧化机制,对NiCrCoAlY粒子来说,在距喷嘴55 mm以内的射流中心处以对流氧化为主,在距离喷嘴55 mm以外将以扩散氧化为主;除飞行中的氧化外,粒子在喷涂过程中还发生形成涂层后的氧化,NiCrCoAlY粒子以飞行中的氧化为主;添加屏蔽气体能减少喷涂过程中涂层的氧化,提高涂层的抗高温氧化性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号